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Chapter 1

Introduction

1.1 Motivation

Delay Di�erential Equations (DDEs) are a type of di�erential equations in which the deriva-
tive of the function in a current time depends on one or more values of the function in the
past. DDEs gained wide interest because they are perfectly suited to model systems with
aftere�ect (time lag) - systems which play an important role in many applied �elds of sci-
ence like biology, engineering and the control theory. In particular, they may be used to
model real life phenomena such as: transport lags between two compartments in living cells;
population dynamics that include maturation times; aspects of control theory where control
signals must pass some distance between the controller and the controlled device; to name
only the few. One can �nd large number of examples in the literature ([9, 11] and references
therein): from describing several aspects of infectious disease dynamics [5], drug therapy
[17], immune response [6, 31], chemostat models [36], circadian rhythms [20], epidemiology
[7], the respiratory system [25], tumor growth [26] and neural networks [4, 30]. Statistical
analysis of ecological data [23, 24] has shown that there is evidence of delay e�ects in the
population dynamics of many species.

The advantage of using DDEs lies in the fact that one can create very simple models
(even with a single variable) which produce rich dynamical behavior that can be reasonably
explained using small number of parameters. The reason for this is that the dynamical
behaviour generated by DDEs can be seen as in�nite dimensional. Thus, by introducing a
few variables and parameters one can obtain dynamical system in a very big phase-space.
Moreover, we can tract solutions in the basic variables which is advantageous in contrast to
simplifying methods for large systems of ODEs [10], which may lose important informations.

There are many extensively studied classes of solutions to DDEs such as stationary
solutions and periodic orbits. It is also important to investigate other dynamical properties
of DDEs such as connecting orbits (between stationary points and/or periodic orbits) that
can reveal (part of) the structure of (global) attractors and invariant manifolds, which
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together constitute the image of the full dynamics of the system and dictates its possible
behaviour for the long time evolution. Those properties are usually studied numerically,
but rigorous, mathematical proofs for their existence is often limited to the simplest cases,
where solutions can be computed analytically.

In recent years there were many important applications of computer assisted proofs of
various dynamical properties in discrete maps, ordinary di�erential equations (ODEs) and
(dissipative) partial di�erential equations (PDEs), see for example [29, 28, 12, 21, 34, 27]
and references therein. By the computer assisted proof we mean a computer program which
rigorously check assumptions of abstract theorems about the existence of some dynamical
property. In this work we are going to extend this rich theory to the case of DDEs by
creating a rigorous integration scheme for DDEs with bounded delays. By the rigorous
integration we understand a computer procedure which produces strict bounds for the
solution - in this case a �nite set of representable numbers B̄ which describes a subset B
of some functional space with a property that a real solution x(t) to a given DDE system
belongs to B. Such a rigorous integrator may then be used in computer assisted proofs
of many dynamical properties such as the existence of stationary points, periodic orbits,
homo- or hetero- clinic connections and chaos.

1.2 Results of this work

We have created rigorous numerical algorithms to compute enclosures for the solutions to
scalar DDEs with single, bounded, constant delay of the form ẋ = f (x(t− 1), x(t)). We
have proved their correctness and we measured their performance on the exemplary DDEs.
The methods are very promising, as they exhibit strong contraction on the estimates for
high order derivatives of the solutions, and this allow to represent the solutions by the �nite-
dimensional representation. Moreover, we have developed algorithms to compute Poincaré
maps associated with a given DDE, that may be used in the computer assisted proofs of
periodic orbits both stable and unstable ones. To our knowledge the rigorous integration
of DDEs is a new subject not studied extensively yet, and we do not know of currently
available rigorous integrator designed for DDEs.

There are several works that deals with the rigorous numerics for periodic solutions to
DDEs, see [13, 32] but the approach used there is very di�erent from the presented work.
Those mentioned works concentrate on the expansion of the periodic solutions into Fourier
series and then on solving some algebraic equations. There is no notion of the rigorous
integration and the applicability of those methods is restricted to prove the existence of
periodic solutions. The rigorous integration presented in this work may be used to prove the
existence of periodic solutions but also for connecting orbits and other dynamical properties,
for which it is necessary to integrate solutions forward in time.
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1.3 Organization of this work

The paper is organized as follows: in Chapter 2 we gather all necessary notations regarding
DDEs and we present some well-known facts about solutions to DDEs, together with a
short review of currently available theoretical literature on this subject. We also present
interesting examples that were shown to generate complex dynamical behaviour. Those ex-
amples will be used to test our methods. Chapter 3 is devoted to the �xed step size method
for fast and rigorous computation of numerical solutions to DDEs with bounded delays.
We present methods and discuss its performance on exemplary systems. In Chapter 4 we
present strategy for reducing the wrapping e�ect during long integrations, based on similar
strategy for ODEs proposed by Lohner. We also compare the performance of Lohner sets
and basic interval set arithmetic. In Chapter 5 we present two alternative algorithms for
computing representations after an arbitrary time step smaller than basic, �xed step size
of the integrator from Chapter 3 - those methods are used to construct Poincaré maps. We
discuss advantages and disadvantages of those methods and we assess their performance. In
the last Chapter 6 the work is summarized and possible future directions for development
are proposed.

1.4 Notation

In this work we use the following notation. For a function f : R → R, By f (k) we denote
k-th derivative of f . By f [k] we denote the term 1

k! · f
(k). By f ′(t−) and f ′(t+) we denote

the left-hand side and right-hand side derivative of f w.r.t. t respectively.

For F : Rm → Rn by DF (z) we denote the matrix
(
∂Fi
∂xj

(z)
)
i∈{1,..,n},j∈{1,..,m}

i.e. a

Jacobian matrix of the function F computed at the point z ∈ Rm.
Let A = Πn

i=1[ai, bi], for ai ≤ bi, ai, bi ∈ R. We call A an interval set (a product of closed
intervals in Rn). For two sets A ⊂ Rn and B ⊂ Rn we denote by [A,B] a minimal interval
set, such that A∪B ⊂ [A,B]. In case of A and B being closed intervals in R, then [A,B] is
an interval [min(A ∪B),max(A ∪B)]. For sets A ⊂ R, B ⊂ R, a ∈ R and for some binary
operation � : R×R→ R we de�ne A�B = {a � b : a ∈ A, b ∈ B} and a�A = A�a = {a}�A.
Analogously, for f : R→ R and a set A ∈ R we de�ne f(A) = {f(a) : a ∈ A}.

LetD ⊂ R be a compact set and let denote by Cr(D,R) the space of all real valued func-
tions of class Cr overD equipped with standard supremum norm: ‖f‖ =

∑r
i=0 supx∈D |f (i)(x)|.

Let τ ∈ R such that τ > 0. By Ck(τ), k ∈ {0, 1, 2...,∞}, we denote space Ck([−τ, 0],R).
In case of τ = 1 we will abuse notation and we will denote Ck(1) by Ck for simplicity.

For a given function x : [−τ,+∞) → Rn we denote by xt a function in Ck([−τ, 0],R)
such that xt(s) = x(t+ s) for all s ∈ [−τ, 0].

For v ∈ Rn by πiv for i ∈ {1, 2, .., n} we denote the projection of v onto the i-th
coordinate. For vectors u, v ∈ Rn by 〈u, v〉 we denote the standard scalar product: 〈u, v〉 =∑n

i=1 πiv · πiu
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Chapter 2

Preliminaries

2.1 Delay Di�erential Equations

In this work we are going to deal only with bounded delays and we will work with scalar
equations. All theorems may be extended to higher dimensions.

The most general form of the DDE with bounded delays is [3, 8]:

ẋ = f(t, xt) (2.1)

where for 0 < τ ∈ R, we have xt ∈ C0(τ) and f : R × C0(τ) → R is a given function. In
this context ẋ stands for a right-hand-side derivative of x w.r.t. time t.

The initial value problem (IVP) is naturally given by:{
ẋ = f(t, xt), t ≥ 0,

x(t) = ψ(t), t ∈ [−τ, 0],
(2.2)

where ψ : [−τ, 0]→ R is called an initial function. Please notice that, in general, function
ψ need not to be continuous. This is the case in many areas of research like control theory
or neural networks where initial conditions are often step functions.

We assume that for each interval I ⊂ R, I = [a, b], a ≤ b and each continuous function
u : [−τ + a, b]→ R the function f̃(t) = f(t, ut) is integrable on the domain I.

The following de�nitions are natural.

De�nition 1 The function u : [−τ +a, b]→ Rn is called a solution of (2.1) on the interval
I = [a, b] if u is continuous on I and

u(t) = u(a) +

ˆ t

a
f(s, us)ds (2.3)

holds for all t ∈ [a, b].
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De�nition 2 The function u : R→ R is called a full solution of (2.2) if u is a solution of
(2.1) on each interval [a, b] ⊂ R, a ≤ b and u0 = ψ.

For a given ψ we denote by xψ the solution of (2.2) for a given initial data ψ, that is a
solution to (2.1) interval [−τ, b] for the largest possible b ∈ R.

As in case of ODEs, stationary and periodic solutions are an important classes of so-
lutions. In the case of stationary solutions we look for functions x : R → R for which we
have:

f(x, xt) = 0, ∀t ∈ R. (2.4)

If f(u, ut) = 0 then ut ≡ û for some û ∈ R and all t ≥ 0, but we are not able, in general,
to expand it to t < 0. In spite of this, the following de�nition is natural:

De�nition 3 The function u is called a stationary solution of (2.2) if u is a full solution
of (2.2) and for each t ∈ R u(t) = û ∈ R, û = const.

We see that if a solution u(t) = û for all t ∈ R, then it must be that f(u, ut) = 0.
In the case of periodic solutions we have:

De�nition 4 The function u is called a periodic solution of (2.2) if u is a full solution of
(2.2) and there exist T > 0 (called a period) such that u(t) = u(t+ T ) for each t ∈ R. The
smallest period T for a periodic solution u is called a basic period.

Let assume now that ψ ∈ C0(τ). Then we can de�ne natural (local) semi�ow ϕ in
C0(τ) induced by (2.1) by

ϕ : C0(τ)× R+ 3 (ψ, t) 7→ xψt ∈ C0(τ). (2.5)

Thus the problem of �nding solutions to DDEs reduces to investigating (local) semi�ows
in an in�nite dimensional phase-space C0(τ).

Remark 1 If u(t) is a stationary solution of (2.2) then u0 is a �xed point of the corre-
sponding semi�ow ϕ. If u(t) is a periodic solution of (2.2) then {ut}t∈R is a periodic orbit
of the corresponding semi�ow ϕ.

Notice that the general form of problem (2.2) allows for various forms of the r.h.s f(t, xt).
The function f may even consist of integrals e.g.

´ 0
−τ xt(s)ds as in Voltera integral formulas

[19]. However in many practical and interesting cases it su�ces to restrict investigations to
the autonomous DDEs with several discrete delays 0 < τi ≤ τ of the form:

ẋ = f(x(t), x(t− τ1), ..., x(t− τm)), f : Rm+1 → R, x ∈ R. (2.6)

The simplest form will be

ẋ = f(x(t), x(t− τ)), f : R2 → R, x ∈ R. (2.7)

This formulation of the problem (2.6) is until now one of the most studied. Yet, there can
still be found systems with surprising dynamical behaviour [14]. Thus, it is still important
to investigate such systems, especially for a strongly non-linear r.h.s f .
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2.2 Statement of the problem

In this work we study the following question: will it be possible to rigorously integrate (2.7)
(or the corresponding semi�ow) to obtain �nite dimensional representation of the solution of
quality good enough to verify assumptions of abstract theorems about existence of dynamical
properties of the system?

The exact meaning of this short sentence is as follows:

1. By a �nite representation of a function f we understand a �nite collection B̄ of
computer-representable numbers that unambiguously de�nes a subset B of some func-
tional space such that f ∈ B;

2. By the rigorous integration we understand a computer procedure Φε that, given a
representation Ā of xt, produces strict bounds in the same representation for the
solution to (2.7) after time t = ε, that is if B̄ = Φε(Ā) then xt+ε ∈ B;

3. By the dynamical properties of the system we mean for example the existence of
stationary points, periodic orbits, connecting orbits, symbolic dynamics, structure of
the attractors, chaos, etc.;

4. By abstract theorems we mean theorems such as: the Brouwer theorem, the Conley
Index, Covering Relations[33], etc. Usually, application of the mentioned theorems
requires construction of the time-shift map (or a Poincaré map) P (x) = ϕ (x, tp(x)),
which is done by the recursive application of the single-step method Φε;

To apply theorems mentioned above we need the compactness of the map P . It turns
out that in the case of DDEs the compactness of a map P is not a problem at all as long as
the solutions stays bounded. The real problem is to get apropriate bounds on the high-order
derivatives of the solutions to the equation (2.7). Moreover, when it comes to investigate
the dynamics of the map P by a �nite, rigorous approximation it is also essential that we
get contraction on their bounds (this is one of the requirements we mean by the sentence
the quality good enough in the statement of the problem). In the following of this work we
will focus on those underlined goals.

The compactness of the time shift map P comes from the smoothing of the solutions to
DDEs and the following lemma which is a direct consequence of the Arzela-Ascoli Theorem:

Lemma 2 Let D ⊂ Cn(τ), be closed, bounded. Assume that for x ∈ D, x(n+1) exists and
|xn+1| ≤M . Then D is compact (in Cn-norm).

To simplify things, let assume that tp(x) ≡ τ for all x, that is P (x0) = xτ where

xτ (t) = x0(0) +

ˆ t

−τ
f (xτ (s), x0(s)) ds, t ∈ [−τ, 0], (2.8)
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wherever the integral exists. If the r.h.s. f of equation (2.7) is smooth enough then for
x0 ∈ Cn(τ) we have P (x0) = xτ ∈ Cn+1(τ). Thus, if x(t) is a bounded solution to (2.7),
that is |x(t)| ≤M0 for all t and someM0 ∈ R then using time-shift map P we can guarantee
that x(t) has uniform bounds for derivatives up to n + 1 for t su�ciently large. Thus, by
Lemma 2, the map P is compact in any Cn-norm. The same is essentially true for any tp
as long as tp(x) ≥ τ but the considerations in this case are very technical. We will discuss
this issue in more detail in Section 5.4.

2.3 Poincaré maps

A standard tool used in proving the existence of periodic orbits both in analytical consid-
eration and in computer assisted proofs are the Poincaré maps, which are a special case of
time-shift maps mentioned in previous section. Below we recall basic de�nitions concerning
Poincaré sections and Poincaré maps. We also relate problem of �nding periodic solutions
in dynamical systems to �nding stationary points for Poincaré maps de�ned for suitable
sections. For simplicity we restrict ourselves to linear sections.

De�nition 5 Let V be a vector space over R and let s : V → R, s 6≡ 0, be a linear map
and let a ∈ R. We call the set S = {x ∈ V : s(x) = a} an (s,a)-section. If s and a are
known from the context we will simply call the set S the section.

Remark 3 If dim(V ) = n then S is an (n− 1)-dimensional hyper-surface in the space V .

De�nition 6 Let V be a vector space over R, let ϕ(x, t) be a (semi)�ow in V and let S be
some (s,a)-section in V . De�ne D ⊂ V such that for each x0 ∈ D there exist the smallest
time tp(x0) > 0 such that

ϕ (x0, tp(x0)) ∈ S (2.9)

We call tp : D → R a Poincaré return time.

De�nition 7 Let S be a (s,a)-section and let B ⊂ S be such that tp is de�ned on B. We
say that ϕ is transversal to S on B i� there exist ε > 0 such that for each x ∈ B the curve
ϕ (x, [tp(x)− ε, tp(x) + ε]) intersects B transversally, that is d

dts (ϕ(x, t)) > 0 (respectively
< 0) for all t ∈ [tp(x)− ε, tp(x) + ε].

De�nition 8 Let V be a vector space over R, let ϕ(x, t) be a (semi)�ow in V and let S be
some (s,a)-section in V . Let B ⊂ S be such that tp is de�ned on B and ϕ is transversal to
S on B. Then the map

Pϕ,B : B → S (2.10)

de�ned by
Pϕ,B(x) = ϕ(x, tp(x)), x ∈ B (2.11)

is called a Poincaré map. We skip subscripts ϕ and B when they are known from the context
and we simply write P (x) = ϕ(x, tp(x)).
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We see that the question of the existence of periodic orbits in (semi)�ows may be stated
as a problem of existence of �xed points of some Poincaré maps. Namely if we have a �xed
point x0 of the Poincaré map P , P (x0) = x0, then the function x(t) = ϕ(x0, t) is periodic
with the basic period T = tp(x0).

In the next section we present an interesting application of the Poincaré map to a
problem of �nding periodic solutions in some DDE and we present sample problems on
which we are going to test our rigorous integration procedure.

2.4 Exemplary problem for consideration

Here we will present a sample problem investigated by Krisztin and Vas in their work [14].
We propose variant of this problem with smooth r.h.s for which analytical computations
are too di�cult to carry out by hand and for which we may use the rigorous integrator
presented in the remainder of this work.

Consider the following equation:

x′(t) = −x(t) + f (x(t− 1)) , (2.12)

where:

f(x) =


−7 if x ≤ −1

0 if x ∈ (−1, 1)

7 if x ≥ 1

(2.13)

Krisztin and Vas in their work [14] showed that for this system there exist periodic solutions
Op and Oq such that:

� the solutions oscillate around stationary solutions x ≡ 1 and x ≡ −1, that is {−1, 1} ⊂
Op/q(R),

� for any interval [−1 + a, a] the graph of Op|[−1+a,a] and Oq|[−1+a,a] crosses x = 0 at
most 2 times.

Periodic solutions with such properties are called Large-Amplitude Slowly Oscilatory Peri-
odic (LSOP) solutions.

Krisztin and Vas have constructed a Poincaré map in a suitable three-dimensional in-
variant subspace D of the space C0 and showed that this map has two hyperbolic stationary
points op and oq (with one and two unstable directions respectively) that corresponds to
LSOP solutions Op and Oq. Their approach however required the system to be in form
simple enough to allow analytical computation of the explicit solutions to (2.12) in the
subspace D. This is (almost) impossible when we work with smooth, highly nonlinear r.h.s.
In this work we are going to test our approach with the following exemplary equations:

x′(t) = −x(t) +
1

2
· x(t− 1)2 (2.14)
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and
x′(t) = −x(t)− 3.2 · x(t− 1) + x(t− 1)3. (2.15)

Numerical analysis suggests that system (2.14) has a stable stationary solution x ≡ 0 and
system (2.15) has a stable periodic solution presented in Figure 2.1 (numerical approxima-
tion).

0 2 4 6 8

−
1.

0
0.

0
1.

0

t

x(
t)

Figure 2.1: Numerical approximation to the stable periodic solution to system (2.15).

The future goal is to be able to present computer assisted proof of existence of a LSOP
solution to the system (2.16), for which we have found a numerical candidate presented in
Figure 2.2.

x′(t) = −x(t) + x(t− 1) ·
(
−3.6 + x(t− 1)2 ·

(
4.7− 0.1 · x(t− 1)2

))
(2.16)

0 1 2 3 4 5 6

−
1.

5
0.

0
1.

5

t

x(
t)

Figure 2.2: Numerical approximation to the LSOP solution to system (2.16).
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Chapter 3

Rigorous integration of Delay

Di�erential Equation

We are interested in the rigorous integration of the DDE (2.7). Without loss of generality
and for the simplicity of presentation we can restrict ourselves to the case of the following
equation:

x′(t) = f(x(t− 1), x(t)), x ∈ R (3.1)

By rigorous integration we mean a procedure that gives bounds on the solution (value and
derivatives of it) at each time t in some interval [−1, T ]. We assume that f is a 'nice'
function, i.e. it is su�ciently smooth for the representation we will use (for simplicity we
usually assume f ∈ C∞). All presented algorithms and procedures can be generalized to
any dimensions.

3.1 Taylor representation of piecewise smooth functions

To create a rigorous integrator for the problem (3.1) we need a �nite representation of some
function spaces. We are going to work with smooth or piecewise smooth functions.

De�nition 9 Let n > 0 and p > 0 be �xed integers and let h = 1
p . By Cnp we denote

the set of all functions f : [−1, 0] → R such that f is of class Cn+1 on each interval
[−i · h, (−i+ 1) · h) for i ∈ {1, .., p}.

Remark 4 Not all functions in Cnp need to be continuous on the whole interval [−1, 0].
Example: A function

x(t) =

{
1 t ∈

[
−1,−1

2

)
0 t ∈

[
−1

2 , 0
] (3.2)

is by de�nition in Cn2 for any n but it is not continuous.
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De�nition 10 We assume that all the derivatives in this de�nition are computed as forward
in time derivatives w.r.t. time t. Let n > 0 and p > 0 be �xed integers, let h = 1

p

and let f ∈ Cnp be given. An indexed collection f̄ of closed intervals f̄ i,[k] ⊂ R, (i, k) ∈
{(i, k) : i ∈ {1, .., p} , k ∈ {0, .., n+ 1}} ∪ {(0, 0)} such that:

� f (0) ∈ f̄0,[0],

� f [k]
(
− i
p

)
∈ f̄ i,[k] for 1 ≤ i ≤ p, 0 ≤ k ≤ n,

� f [n+1]
(
− i
p + ξ

)
∈ f̄ i,[n+1] for all ξ ∈ [0, h) and 1 ≤ i ≤ p,

is called the (interval) (p,n)-representation of f . We also say that f is (p,n)-representable
with f̄ .

We call f̄ i,[k] the (i,k)-th coe�cient of the representation and we call f̄ i,[n+1] the i-th
remainder of the representation. The collection of all f̄ i,[n+1] is called the remainder of the
representation.

When parameters n and p are known from the context we will omit them and we will simply
call f̄ the representation of f .

Remark 5 Not all functions in Cnp have a (p,n)-representations. A function

x(t) =

{
ln(−t) t ∈ [−1, 0)

0 t = 0
(3.3)

is Cnp but it has non-bounded derivative on the interval [−1, 0).

Remark 6 In this work, we will slightly abuse notation and we will write for the remainder
part that:

f [n+1]

(
− i
p

+ ξ

)
∈ f̄ i,[n+1], ∀ξ ∈ [0, h]. (3.4)

Here, we have computed the remainder on wider interval [0, h] than [0, h) form the de�nition.
Such representations are perfectly valid (p,n)-representations, but have usually slightly bigger
remainder terms. This will be no issue in the rigorous integration.

Example: For a function f(t) ∈ C1
2 such that:

f(t) =

{
1
4 + t2 t ∈

[
−1, 1

2

)
2 · t2 t ∈

[
1
2 , 0
] (3.5)

13



We can produce two sample (2,1)-representations f̄1 and f̄2 such that:

f̄
2,[0]
1 = f̄

2,[0]
2 =

{
5

4

}
f̄

2,[1]
1 = f̄

2,[1]
2 = {−1}

f̄
1,[0]
1 = f̄

1,[0]
2 =

{
1

2

}
f̄

1,[1]
1 = f̄

1,[1]
2 = {−1}

f̄
0,[0]
1 = f̄

0,[0]
2 = {0}

and the remainders are

f̄
2,[2]
1 = {1}

f̄
1,[2]
1 = {2}

and

f̄
2,[2]
2 = [1, 2]

f̄
1,[2]
2 = {2}

The remainder in f̄1 is computed on the intervals [−i · h,−i · h+ h), while in the case of
f̄2 it is computed on the intervals [−i · h,−i · h+ h], where h = 1

2 , i ∈ {1, 2}.

It is clear from De�nition 10 that for t = −i · h+ ξ where 1 ≤ i ≤ p and 0 ≤ ξ < h we
have the following:

f(t) ∈
n+1∑
k=0

f̄ i,[k] · ξk. (3.6)

In other words, a representation of f is simply a collection of (forward) Taylor expansion
coe�cients of f up to order n computed in equally spaced points −i/p, i ∈ {1, .., p}, the
value of the function at t = 0 and the enclosures for the (n+ 1)-st Taylor coe�cients of f
on the whole intervals Ii = [− i−1

p ,−
i
p). Although the value of the function at t = 0 may

be derived from the other coe�cients (using equation (3.6)), incorporating it as x̄f,[0]
0 will

be important in the context of the rigorous integrator developed in the next section. The
graphical idea of the representation is given in Figure 3.1.

The following de�nition may be regarded as a de�nition of the 'best' representation for
a given function f :

14



t

t = 0t = −1

−0
4−1

4−2
4−3

4−4
4

f(t)

f̄0,[0]f̄1,[0]

f̄1,[1]

f̄1,[2]

f̄1,[3]

f̄2,[0]

f̄2,[1]

f̄2,[2]

f̄2,[3]

f̄3,[0]

f̄3,[1]

f̄3,[2]

f̄3,[3]

f̄4,[0]

f̄4,[1]

f̄4,[2]

f̄4,[3]

Figure 3.1: The graphical idea of the representation f̄ of some function f . The function
f is presented as a black, solid, sinusoidal line. In our example n = 2 and p = 4. Grid
points are located at the times ti = − i

p for i ∈ {0, .., p}. The representation f̄ consists

of coe�cients f̄0,[0] and f̄ i,[k] for i ∈ {1, ..., p}, k ∈ {0, ..., n + 1}. The coe�cient f̄ i,[0] is
simply a (bound on) value of the function f at point − i

p (this is also true for f̄0,[0]), the

coe�cients f̄ i,[1] are (bound on) value of derivative at a given time (presented in picture
as line stretching from the point) and so on. We draw a small circle for a given coe�cient
to stress that this is a (bound on) value at the point. The coe�cients f̄ i,[n+1] are bounds

on the (n+ 1)-st derivative on the whole intervals
[
− i
p ,−

i−1
p

)
and to stress that we draw

them as gray-shaded boxes stretching over the whole length of the appropriate interval.
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De�nition 11 We de�ne the canonical (p,n)-representation of f ∈ Cn+1
p as a minimal

(p,n)-representation of f , in the sense that for each 1 ≤ i ≤ p the following is true:

� f̄0,[0] = {f (0)},

� f̄ i,[k] =
{
f [k]

(
− i
p

)}
for 0 ≤ k ≤ n,

� f̄ i,[n+1] =
{
f [n+1]

(
− i
p + ξ

)
: 0 ≤ ξ ≤ h

}
.

Remark 7 The representation described in this chapter is an adaptation of the represen-
tation given in [2], where the term f̄ i,[k] was denoted by aki and term f̄ i,[n+1] was denoted
by bi.

It is convenient to use notation of the coe�cients of (p,n)-representations in the form
f̄ i,[k], as this clearly link the coe�cient to its place and meaning in equation (3.6). However,

sometimes we would like to treat collection of coe�cients x̄f,[i]k as a vector in some, M
dimensional, euclidean space RM , for someM depending on p and n. For this, the following
de�nition is natural:

De�nition 12 For given integers p > 0 and n > 0 let P = {1, .., p} and N = {0, .., n+ 1}.
Then we de�ne (p, n)-index function I(p,n) : P ×N ∪ {(0, 0)} → N+ as

I(p,n)(0, 0) := 1, (3.7)

I(p,n)(i, k) := ((i− 1) · (n+ 2) + k) + 2, (3.8)

If n and p are known from context we will omit subscripts and we will call I simply the
index function. From De�nition 12 of I(p,n) it is clear that:

Lemma 8 I(p,n) is an injection, and Dom(I(p,n)) = {1, .., p · (n+ 2) + 1}.

From now one, using the index function, we can think of a representation f̄ as a subset
of RM , where M = p · (n + 2) + 1. Namely, we can construct a set of vectors f̄ ⊂ RM
such that πI(i,k)f̄ = f̄ i,[k]. We will use the same symbol f̄ to describe both f̄ and f̄ , as it
will be clear from the context which one we are using. Index function will allow us to use
standard techniques for representing interval sets in computations, most notable the Lohner
sets from CAPD library. Also we can construct inclusion relation between representations
by f̄ ⊂ ḡ ⇐⇒ f̄ ⊂ ḡ. We will write x ∈ f̄ to indicate a vector x ∈ R(n+2)·p+1 such that
x ∈ f̄ .

The representation of a given function f usually can describe more than a single function
f . Therefore we de�ne:

16



De�nition 13 The support of (p,n)-representation f̄ is a set:

Supp(f̄) :=
{
g ∈ Cn+1

p : f̄ is a (p,n)-representation of g
}

(3.9)

By De�nition 13 we see that f̄ is a (p,n)-representation of each g ∈ Supp(f̄). We also know
that the set Supp(f̄) is contained in Cn+1

p . Sometimes however, for a given representation
f̄ , we will need to work only on a subset of functions in Supp(f̄) of some continuity class
Ck on the whole interval [−1, 0]. Therefore we de�ne:

De�nition 14 The Ck-support of (p,n)-representation f̄ , k ∈ {0, 1, 2, ...,∞}, is a set:

Supp(k)(f̄) := Supp(f̄) ∩ Ck (3.10)

As we seen in example in Remark 4, not all functions in Supp(f̄) are continuous. There-
fore it is reasonable to state the following:

De�nition 15 We say that f̄ is Ck-admissible i� Supp(k)(f̄) 6= ∅.

The notion of Ck-admissible (p,n)-representations will be used in Chapter 5.
As a last thing in this section we would like to show a procedure that, given a (p,n)-

representation f̄ of some function f , will return a rigorous bounds for each derivative f [k](t)
for each t ∈ [−1, 0]. This procedure will be an essential component of the rigorous integrator
presented in the next section. Using equation (3.6) we can prove that:

Lemma 9 Assume f ∈ Cn+1
p and its (p,n)-representation f̄ are given. Let de�ne

ci,[k](ε) =
n+1∑
l=k

(
l

k

)
· εl−k · f̄ i,[l], (3.11)

for 0 ≤ ε < 1
p . Then

f [k]

(
− i
p

+ ε

)
∈ ci,[k] (ε) . (3.12)

Proof: Let �rst look at the Taylor expansion of f
(
− i
p + ε

)
:

f

(
− i
p

+ ε

)
= f

(
− i
p

)
+

n∑
l=1

εl

l!
· f (l)

(
− i
p

)
+

εn+1

(n+ 1)!
· f (n+1)

(
− i
p

+ ξ0

)
, (3.13)

where ξ0 = ξ0(ε) ∈ [0, ε]. Using De�nition 10 of the representation we get the following:

f [0]

(
− i
p

+ ε

)
= f

(
− i
p

+ ε

)
∈

n+1∑
l=0

εl · f̄ i,[l] = ci,[0](ε). (3.14)
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Now, similarly, we can express each f (k)
(
− i
p + ε

)
by:

f (k)

(
− i
p

+ ε

)
=

n∑
l=k

εl−k ·
f (l)

(
− i
p

)
(l − k)!

+

+ εn+1−k ·
x(n+1)

(
− i
p + ξk

)
(n+ 1− k)!

,

for some ξk = ξk(ε) ∈ [0, ε]. Dividing both sides by k! and setting f (l) = l! · f [l] we get the
following:

f [k]

(
− i
p

+ ε

)
∈

n+1∑
l=k

l!

k! · (l − k)!
· εl−k · f̄ i,[l] = ci,[k](ε). (3.15)

A single coe�cient ci,[k](ε) for a given k may be computed using an iterative procedure
presented in the algorithm 1. We usually would like to compute all coe�cients at once. For

Algorithm 1 compute-c-k

Input: f̄ , i, k, ε

Output: ci,[k](ε)

Require: f̄ is a (p,n)-representation, 1 ≤ i ≤ p, 0 ≤ k ≤ n+ 1, 0 ≤ ε ≤ 1
p

1: ĉ
i,[k]
n+1 ← f̄ i,[n+1]

2: for l = n, n− 1, .., k do

3: ĉ
i,[k]
l ← f̄ i,[l] + ε · l+1

l+1−k · ĉ
i,[k]
l+1

4: end for

5: ci,[k](ε)← ĉ
i,[k]
k

this we introduce Algorithm 2.
This ends the preparative this section, where we have described in details the (p,n)-

representations of (su�ciently) smooth functions and discussed some properties of those
representations. Now we are ready to describe rigorous integration method for DDEs of the
form (3.1).

3.2 Integrator

Let assume that we are at time t = 0 and we have some a priori representation x̄0 of the
initial function x0. We denote by x = x(t) the solution of (3.1) with initial condition x0.
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Algorithm 2 compute-c

Input: f̄ , i, ε

Output:
{
ci,[k](ε)

}
k∈{0,..,n+1}

Require: f̄ is a (p,n)-representation, 1 ≤ i ≤ p, 0 ≤ ε ≤ 1
p

1: for k : 1 ≤ k ≤ n do

2: ci,[k](ε)← compute-c-k( f̄ , i, k, ε )

3: end for

The goal: we want to compute x̄h - the representation of xh. For this we will use Taylor-type
integration algorithm.

The goal which we want to achieve is graphically presented in Figure 3.2. We can see
that most of the coe�cients overlap in the new representation at t = h with those in the
representation at t = 0. The procedure of moving them from x0 to the new representation
xh is called the shift part. The procedure of computation of new elements (empty circles
and an empty rectangle in Figure 3.2) is called the forward part. This part is more involved
than the shift part so we will divide it into three separate algorithms, which will be executed
in the following order:

� computing coe�cients x̄1,[k]
h for k ∈ {1, .., n},

� computing the remainder x̄1,[n+1]
h ,

� computing the value of xh at t = 0 (stored in x̄0,[0]
h ).

In the forward part we will use the r.h.s f of equation (3.1) and its derivatives w.r.t.
time. As in [33] we will use an automatic method for obtaining x(k)(t) using equation (3.1).
The details may be found in [18, 16]. From equation (3.1) we have that:

x(k)(t) =
dk−1

dtk−1
f(x(t− 1), x(t)). (3.16)

Let z = (z1, z2), z1, z2 ∈ R and f(z) = f(z1, z2). For k = 1, 2 and z(t) = (x(t− 1), x(t)) we
get:

x(1)(t) = f(z(t)) = f(x(t− 1), x(t)), (3.17)

x(2)(t) =
d

dt
f (z(t)) = (3.18)

=
∂f

∂z
(z(t)) · ∂z

∂t
(t) (3.19)
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Figure 3.2: A graphical presentation of the integrator scheme. On top we see a representa-
tion after one step of size h = 1

p . Black solid dots and gray rectangles represent the values
we need not to compute - this is the shift part. The elements that need to be constructed
are presented as empty dots and an empty rectangle - this is the forward part. The doubly
bordered dot is a (bound on) value of the function at the time t = h = 1

p . The doubly
bordered empty rectangle is an enclosure for the n + 1-st derivative on the whole interval[
0, 1

p

]
.
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Where · in equation (3.19) is a scalar product. Thus we get:

x(2)(t) =
∂f

∂z1
f (x(t− 1), x(t)) · x(1)(−1) + (3.20)

+
∂f

∂z2
(x(t− 1), x(t)) · x(1)(0) (3.21)

We see that the second derivative with respect to t of x(t) is a function of four variables:
x(t− 1), x(1)(t− 1), x(t) and x(1)(t). Thus, there exist function F (1) : R4 → R such that:

F (1)
(
x(t− 1), x(1)(t− 1), x(t), x(1)(t)

)
= x(2)(t). (3.22)

This procedure can be applied recursively to obtain a family
{
F (k) : R2·(k+1) → R

}
k∈N of

functions such that:

x(k+1)(t) = F (k)
(
x(−1 + t), .., x(k)(−1 + t), x(t), .., x(k)(t)

)
. (3.23)

where

F (0) (z1, z2) = f(z1, z2). (3.24)

We also introduce the following notation for the simplicity of the implementation of the
algorithms:

F [k](z1, .., z2·(k+1)) =
1

k!
F (k)

(
0! · z1, .., k! · zk+1, 0! · zk+2, .., k! · z2·(k+1)

)
, (3.25)

for which we have:

x[k+1](t) =
1

k + 1
· F [k]

(
x[0](−1 + t), .., x[k](−1 + t), x[0](t), .., x[k](t)

)
. (3.26)

This notation is important in the context of computer rigorous numerics as the functions
F [k] can be e�ciently computed using the automatic di�erentiation (AD) algorithm [18, 16],
provided we know the bounds on the Taylor expansion of x in the t variable up to order k.

Now we are ready to describe all subroutines that will be used in the integrator.

3.2.1 The shift part

The shift part is simply a direct substitution, realized by Algorithm 3. We assume that
the shift part is always executed before the forward part, as the forward part will use the
coe�cient x̄1,[0]

h in all subsequent computations.

21



Algorithm 3 shift
Input: x̄0

Output: x̄
i,[k]
h for 2 ≤ i ≤ p and 0 ≤ k ≤ n+ 1

1: for i, k : 2 ≤ i ≤ p and 0 ≤ k ≤ n+ 1 do

2: x̄
i,[k]
h ← x̄

i−1,[k]
0

3: end for

4: x̄
1,[0]
h ← x̄

0,[0]
0

3.2.2 The forward part - computing x̄
1,[k]
h

The coe�cient x̄1,[0]
h is already present in the representation x̄h after execution of the shift

part. For k > 0 we get the following:

Lemma 10 For 0 < k ≤ n let de�ne:

x̄
1,[k]
h =

1

k
· F [k−1]

(
x̄
p,[0]
0 , .., x̄

p,[k−1]
0 , x̄

1,[0]
h , .., x̄

1,[k−1]
h

)
. (3.27)

Then:
x[k](0) ∈ x̄0,[k]

h (3.28)

Proof: Using equations (3.16), (3.25) and (3.26) we get for 1 ≤ k ≤ n:

x[k](0) =
1

k!
· x(k)(0) =

=
1

k!
· d

k−1

dtk−1
f (x(−1), x(0)) =

=
1

k
· 1

(k − 1)!
· F (k−1)

(
x(−1), .., x(k−1)(−1), x(0), .., x(k−1)(0)

)
∈ 1

k
· F [k−1]

(
x̄
p,[0]
0 , .., x̄

p,[k−1]
0 , x̄

1,[0]
h , .., x̄

1,[k−1]
h

)

Notice that, in Algorithm 4, we need to apply (3.27) iteratively, as all coe�cients x̄1,[l]
h

for l < k are needed for the computation of x̄1,[k]
h . Elements needed for computation of

x̄1,[k] for 1 ≤ k ≤ n are presented in Figure 3.3. The procedure itself is presented in
Algorithm 4 and accepts a rather generic list of parameters, as we will use it in many
applications thorough the text. We want to point out that for the computation of x̄1,[k]

h for

1 ≤ k ≤ n given a representation x̄0 and the value x̄0,[0]
h we need to call the procedure with

the following list of arguments: n− 1, x̄p,[0]
h , ..., x̄

p,[n−1]
h , x̄0,[0]

h .
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Algorithm 4 compute-rep-k

Input: n,
{
x[k](t− 1)

}
0≤k≤n, x(t) = x[0](t)

Output:
{
x[k](t)

}
1≤k≤n+1

1: for k : 1 ≤ k ≤ n+ 1 do

2: x[k](t)← 1
k · F

[k−1]
(
x[0](t− 1), .., x[k−1](t− 1), x[0](t), .., x[k−1](t)

)
3: end for

3.2.3 The forward part - computing remainder

Computing an enclosure for the remainder on the interval
[
0, 1

p

]
is the most involved part

of the integration scheme.
From the mean value theorem we have:

1

(n+ 1)!
· x(n+1)(ε) =

1

(n+ 1)!
· x(n+1)(0) +

1

(n+ 1)!
· x(n+2)(ξ) · ε =

=
1

(n+ 1)
· F [n]

(
x(−1), .., x[n](−1), x(0), .., x[n](0),

)
+ (3.29)

+
1

(n+ 1)!
· F [n+1]

(
x(−1 + ξ), .., x[n+1](−1 + ξ), x(ξ), .., x[n+1](ξ)

)
· ε

for 0 ≤ ξ ≤ ε ≤ 1
p . From De�nition 10 of the representation and from Lemma 9 we have

for 0 ≤ k ≤ n+ 1:

x[k](−1 + ξ) ∈ c
p,[k]
x̄0 ([0, h]) (3.30)

x[k](−1) ∈ x̄
p,[k]
0 (3.31)

x[k](0) ∈ x̄
1,[k]
h (3.32)

The only things left to estimate are the values of x[k](ξ) for ξ ∈
[
0, 1

p

]
.

Lemma 11 Let x(t) be a solution of (3.1) on the interval
[
−1, 1

p

]
. Assume that Y ⊂ R is

a set such that

Z = x(0) +

[
0,

1

p

]
· f
(
x

([
−1,−1 +

1

p

])
, Y

)
⊂ int(Y ), (3.33)

Then

x

([
0,

1

p

])
⊂ Z (3.34)
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Figure 3.3: Elements needed to compute x̄1,[k]
h (empty circle) for k = 2 are presented as

bold, dark circles.

Proof: We can treat equation (3.1) on the interval
[
0, 1

p

]
as a non-autonomous ODE of

the form:
x′ = f(a(t), x), (3.35)

where a(t) = x(t) for t ∈ [−1,−1+h] is a known function. Now the conclusion follows from
the proof of the analogous theorem for ODEs. The proof can be found in [33, 35].

De�nition 16 The set Z in Lemma 11 is called a rough enclosure of x on the interval[
0, 1

p

]
.

Remark 12 A heuristic algorithm for �nding the rough enclosure Z is described elsewhere
[33, 35]. In our computations we use a standard procedure implemented in the CAPD
library.

Having rough enclosure Z we set d[0] = Z and we compute d[k] for k > 0 using equa-
tion (3.27). This procedure is summarized in Algorithm 5.

Now we can state the following lemma:

Lemma 13 Let x̄
1,[n+1]
h be an output from Algorithm 5 executed for the representation x̄0

and x̄
1,[0]
h , .., x̄

1,[n]
h such that x[k](0) ∈ x̄1,[k]

h . Then x[n+1] ([0, h]) ⊂ x̄1,[n+1]
h .
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Algorithm 5 compute-remainder

Input: x̄0, x̄
1,[0]
h , .., x̄

1,[n]
h

Output: x̄
1,[n+1]
h , a∗, b∗

1:
{
c[k]
}

0≤k≤n+1
← compute-c( x̄p,[0]

0 , x̄
p,[n+1]
0 , [0, h] )

2: d[0] ← rough-enclosure( f(c[0], ·), x̄0,[0]
0 , 1

p )

3:
{
d[k]
}

1≤k≤n+1
← compute-rep-k( n, c[0], ..., c[n], d[0], [0, h] )

4: a∗ ← 1
(n+1) · F

[n](x̄
p,[0]
0 , .., x̄

p,[n]
0 , x̄

1,[0]
h , .., x̄

1,[n]
h )

5: b∗ ← F [n+1](c[0], .., c[n], c[n+1], d[0], .., d[n], d[n+1])

6: x̄
1,[n+1]
h ← a∗ + [0, h] · b∗

Proof: The proof follows from the Lemmas 11 and 9 and from equation (3.29).

Elements needed to compute the remainder are presented in Figure 3.4.

3.2.4 The forward part - computing value of x at t = h

Now, having all the coe�cients and the remainder at t = 0, we can simply use De�nition 10
of the representation and equation (3.6) to compute x̄0,[0]

h . Namely, for h = 1
p we have:

x (h) ∈ x̄0,[0]
h :=

n+1∑
k=0

x̄
1,[k]
h · hk (3.36)

The elements needed to compute x̄0,[0]
t+h are presented in Figure 3.5.

3.2.5 Altogether

In Algorithm 6 we present a full list of steps needed for one step of the rigorous integration.
The graphical representation of the integrator is presented in Figure 3.2.

For simplicity, we will use Φ(·) in the text of this manuscript instead of the name of
Algorithm 6: compute-Phi. That is, we will write x̄t+h = Φ(x̄t), having in mind that Φ is
computed using the numerical Algorithm 6.

Remark 14 By equation (2.5) de�ning ϕ and from Algorithm 6 we can write ϕ(xt, h) ∈
Φ(x̄t) = x̄t+h.
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Figure 3.4: Elements needed to compute the remainder x̄1,[n+1]
h (a rectangle with double

black-white border) are presented as gray, dark rectangles and black dots. The enclosures
c[k] over the interval [−1,−1 + h] are computed from the representation, using bottom-up
procedure (solid arrows) for better performance. For t = 0 we need to use rough enclosure
(a dashed rectangle) and then compute top-bottom (as pointed by dashed arrows). Dotted
lines connects elements c[·] needed in computation of a given element d[k] (remember that
all d[k′] for k′ < k are needed also). Notice, that we also need to compute d[n+1] which is

here presented as gray rectangle inside x̄1,[n+1]
h . Having all those coe�cients we can �nally

compute the remainder x̄1,[n+1]
h (a white rectangle).
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Figure 3.5: Elements needed to compute x̄0,[0]
t+h (an empty circle) are presented as bold, dark

circles and rectangles.
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Algorithm 6 compute-Phi
Input: x̄t

Output: x̄t+h

1: {x̄i,[k]
t+h}(i,k)∈{(i,k):2≤i≤p,0≤k≤n+1}∪{(1,0)} ← shift-part( x̄t )

2:
{
x̄

1,[k]
t+h

}
1≤k≤n

← compute-rep-k( n− 1, x̄
p,[0]
t , .., x̄

p,[n−1]
t , x̄

1,[0]
t+h )

3: {x̄1,[n+1]
t+h , a∗, b∗} ← compute-remainder( x̄t, x̄

1,[0]
t+h , .., x̄

1,[n]
t+h )

4: x̄
0,[0]
t+h ←

∑n+1
k=0 x̄

1,[k]
t+h · h

k

3.2.6 Expanding the representation

As it was pointed in Chapter 1 the imminent property of DDEs is the smoothing of solutions.
If the r.h.s of equation (3.1) is smooth (i.e. of class C∞) then the solution x(t) gets smoother
and smoother on each interval [n, n + 1], n ∈ N. We can exploit this property in our
integrator. For this purpose we return in procedure compute-remainder coe�cients a∗

and b∗ separately to be able to remember them for future use. After p steps we can use
this history to expand (p, n)-representation to (p, n+1)-representation as presented in the
algorithm 7.

3.3 Numerical experiments

Here we discuss numerical experiments done for the integrator presented in this Chapter
operating on the interval representation (i.e. the product of closed intervals) of the (p,n)-
representation. We use two test cases:

1. a stable stationary solution x ≡ 0 for the system (2.14).

2. a stable periodic solution for the system (2.15). Its numerical approximation is pre-
sented in Figure 2.1.

Since the presentation of the exact output (lower and upper bounds) of the (p,n)-representation
may be di�cult, even for quite small (but reasonable) parameters p and n we have de-
cided to present here only the diameters of the resulting set, which capture the contract-
ing/expanding nature of the integration process. The full data and more �gures are available
on the authors home page[22].
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Algorithm 7 expand-rep
Input: x̄1, {a∗i }i∈{1,..,p}, {b∗i }i∈{1,..,p}
Output: ȳ1

Require: x̄1 is a (p,n)-representation of x1, x̄1 = Φp(x0), a∗i , b
∗
i are coe�cients remembered

in i-th step of computing Φp(x̄0).

Ensure: ȳ1 is a (p,n+1)-representation of x1

1: ȳ
0,[0]
1 ← x̄

0,[0]
1

2: for k : 1 ≤ k ≤ n, i : 1 ≤ i ≤ p do

3: ȳ
i,[k]
1 ← x̄

i,[k]
1

4: end for

5: for i : 1 ≤ i ≤ p do

6: ȳ
i,[n+1]
1 ← a∗p+1−i

7: ȳ
i,[n+2]
1 ← b∗p+1−i

8: end for

For the stationary solution we have prepared an initial (p,n)-representations x̄0 such
that:

x̄
0,[0]
0 = [−a, a] (3.37)

x̄
i,[k]
0 = [−a, a], i ∈ {1, .., p}, k ∈ {0, .., n} (3.38)

x̄
i,[n+1]
0 = 10 · [−a, a], , i ∈ {1, .., p}. (3.39)

(3.40)

We have created �ve test cases, for three of them we have prepared variants with modi�ed
parameter a:

� Tests 1a, 1b, 1c: p = 8, n = 7, a ∈ {0.4, 0.2, 0.1} respectively,

� Tests 2a, 2b, 2c: p = 8, n = 9, a ∈ {0.4, 0.2, 0.1} respectively,

� Tests 3a, 3b, 3c: p = 8, n = 11, a ∈ {0.4, 0.2, 0.1} respectively,

� Tests 4: p = 16, n = 7, a = 0.1,

� Tests 5: p = 32, n = 7, a = 0.1.
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We have run an iteration process for each test for N = p · (n + 2) steps to guarantee that
the resulting representation contains solutions of class Cn+2 - this will be important later.
Then we have compared the diameters of the resulting (p, n)-representation, at each step
i ∈ {0, ..., N}. Because of the rapid contraction in the �rst 2 · p steps of the integration,
we have decided to present in �gures only the history after that step, to be able to see
the contraction e�ect. Full history (after 2 · p initial steps) of the integration process is
presented in Figures 3.6, 3.8 and 3.10, and the history recorded every p steps (after 2 · p
initial steps) is presented in Figures 3.7, 3.9 and 3.11 for tests 1c, 2c, 3c respectively. Also
we present the solution together with all derivatives up to order k = 8 over the whole time
interval t = [p, p · (n+ 1)] in Figure 3.12. The dependence of the resulting set diameter on
the diameter of the initial set in test 3 is presented in Figure 3.13. The in�uence of the
diameter of the resulting set on the choice of the parameter p (the grid spacing) is presented
in Figure 3.14, where we have used tests 1c, 4 and 5, and we have compared diameters of
the corresponding representation coe�cients. All other comparison charts may be found
on the author's web page.

As we can see from Figures 3.6, 3.8 and 3.10 we get very good contraction along the
whole history of the integration for this stationary solution. What is important, we get
the strong contraction on the remainder part- it is what we required from our integrator
in the statement of the problem in Section 2.2. The sudden drops in some coe�cients that
can be seen in the �gures corresponds to the times t ∈ {1, 2, 3, ...} where the solution get
smoothed. We cannot now explain, why this smoothing property of the DDEs generates
such a behaviour in the integrator - we will investigate this in our future work.

The dependence of the initial set diameter is also very good, as presented in Figure 3.13.
We see that changing parameter a to a

2 results in decreasing the resulting set diameter two
or more times. This is because we also decreased the diameter of the remainder which
seems to play dominant role in the resulting set diameter.

The dependence of the diameter on the step size (grid size) is less visible. In Figure 3.14
we see that increasing grid spacing from p to 2 ·p gives slightly better results for coe�cients
x̄i,[k] for k ≤ n, but surprisingly it can produce bigger remainder coe�cients.

Nevertheless, the integrator seems to be working very well in the case of the stationary
solutions.
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Figure 3.6: Diameters of the coe�cients of a sequence {Φn(x̄0)}n∈{16,..,8·(7+2)} (a full history after

2 · p steps) for some (8,7)-representation x̄0 of a stable stationary solution x ≡ 0 for system
(2.14). Red horizontal line marks the diameter of the representation of the initial function. On
the x-axis we have the iteration steps, each tick represents p steps of iteration. The data from test
1c was used. System (2.14), interval set representation and (8,7)-representation were used for the
integration process. The data is stored in the �le steady_08_07_out_3/int_di.txt.
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Figure 3.7: Diameters of the coe�cients of a sequence
{

Φ8·n(x̄0)
}
n∈{2,..,(7+2)} for some

(8,7)-representation x̄0 of a stable stationary solution x ≡ 0 for system (2.14). Red horizon-
tal line marks the diameter of the representation of the initial function after 2 · p steps. On the
x-axis we have the iteration steps, each tick represents p steps of iteration. The data from test
1c was used. System (2.14), interval set representation and (8,7)-representation were used for the
integration process. The data is stored in the �le steady_08_07_out_3/int_di.txt.
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Figure 3.8: Diameters of the coe�cients of a sequence {Φn(x̄0)}n∈{16,..,8·(9+2)} (a full history after

2 · p steps) for some (8,9)-representation x̄0 of a stable stationary solution x ≡ 0 for system
(2.14). Red horizontal line marks the diameter of the representation of the initial function. On
the x-axis we have the iteration steps, each tick represents p steps of iteration. The data from test
2c was used. System (2.14), interval set representation and (8,9)-representation were used for the
integration process. The data is stored in the �le steady_08_09_out_3/int_di.txt.
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Figure 3.9: Diameters of the coe�cients of a sequence
{

Φ8·n(x̄0)
}
n∈{2,..,(9+2)} for some

(8,9)-representation x̄0 of a stable stationary solution x ≡ 0 for system (2.14). Red horizon-
tal line marks the diameter of the representation of the initial function after 2 · p steps. On the
x-axis we have the iteration steps, each tick represents p steps of iteration. The data from test
2c was used. System (2.14), interval set representation and (8,9)-representation were used for the
integration process. The data is stored in the �le steady_08_09_out_3/int_di.txt.
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0.03
0.06
0.09

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.04
0.08
0.12

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.03
0.06
0.09

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.017
0.034
0.051

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.008
0.016
0.024

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.004
0.008
0.012

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.002
0.004
0.006

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

0.0012
0.0024
0.0036

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

0.0009
0.0018
0.0027

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

0.0007
0.0014
0.0021

diam(x8,[9] ) diam(x7,[9] ) diam(x6,[9] ) diam(x5,[9] ) diam(x4,[9] ) diam(x3,[9] ) diam(x2,[9] ) diam(x1,[9] )

0.0006
0.0012
0.0018

diam(x8,[10] ) diam(x7,[10] ) diam(x6,[10] ) diam(x5,[10] ) diam(x4,[10] ) diam(x3,[10] ) diam(x2,[10] ) diam(x1,[10] )

0.0005
0.0010
0.0015

diam(x8,[11] ) diam(x7,[11] ) diam(x6,[11] ) diam(x5,[11] ) diam(x4,[11] ) diam(x3,[11] ) diam(x2,[11] ) diam(x1,[11] )

0.0009
0.0018
0.0027

diam(x8,[12] ) diam(x7,[12] ) diam(x6,[12] ) diam(x5,[12] ) diam(x4,[12] ) diam(x3,[12] ) diam(x2,[12] ) diam(x1,[12] )

Figure 3.10: Diameters of the coe�cients of a sequence {Φn(x̄0)}n∈{16,..,8·(11+2)} (a full history

after 2 · p steps) for some (8,11)-representation x̄0 of a stable stationary solution x ≡ 0 for system
(2.14). Red horizontal line marks the diameter of the representation of the initial function. On
the x-axis we have the iteration steps, each tick represents p steps of iteration. The data from test
3c was used. System (2.14), interval set representation and (8,11)-representation were used for the
integration process. The data is stored in the �le steady_08_11_out_3/int_di.txt.
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0.03
0.06
0.09

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.04
0.08
0.12

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.03
0.06
0.09

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.017
0.034
0.051

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.008
0.016
0.024

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.004
0.008
0.012

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.002
0.004
0.006

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

0.0012
0.0024
0.0036

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

0.0009
0.0018
0.0027

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

0.0007
0.0014
0.0021

diam(x8,[9] ) diam(x7,[9] ) diam(x6,[9] ) diam(x5,[9] ) diam(x4,[9] ) diam(x3,[9] ) diam(x2,[9] ) diam(x1,[9] )

0.0006
0.0012
0.0018

diam(x8,[10] ) diam(x7,[10] ) diam(x6,[10] ) diam(x5,[10] ) diam(x4,[10] ) diam(x3,[10] ) diam(x2,[10] ) diam(x1,[10] )

0.0005
0.0010
0.0015

diam(x8,[11] ) diam(x7,[11] ) diam(x6,[11] ) diam(x5,[11] ) diam(x4,[11] ) diam(x3,[11] ) diam(x2,[11] ) diam(x1,[11] )

0.0009
0.0018
0.0027

diam(x8,[12] ) diam(x7,[12] ) diam(x6,[12] ) diam(x5,[12] ) diam(x4,[12] ) diam(x3,[12] ) diam(x2,[12] ) diam(x1,[12] )

Figure 3.11: Diameters of the coe�cients of a sequence
{

Φ8·n(x̄0)
}
n∈{2,..,(11+2)} for some

(8,11)-representation x̄0 of a stable stationary solution x ≡ 0 for system (2.14). Red horizon-
tal line marks the diameter of the representation of the initial function after 2 · p steps. On the
x-axis we have the iteration steps, each tick represents p steps of iteration. The data from test 3c
was used. System (2.14), interval set representation and (8,11)-representation were used for the
integration process. The data is stored in the �le steady_08_11_out_3/int_di.txt.
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0.0550838
0.0050838
0.0449162

x[0]

0.0650838
0.0050838
0.0549162

x[1]

0.045725
0.000725
0.044275

x[2]

0.0258514
0.0008514
0.0241486

x[3]

0.0128717
0.0008717
0.0111283

x[4]

0.0061445
0.0001445
0.0058555

x[5]

0.003127
0.000027
0.003073

x[6]

0.00187883
0.00007883
0.00172117

x[7]

0.00223943
0.00003943
0.00216057

x[8]

Figure 3.12: A graph of the solution x(t) ≡ 0 to (2.14), together with the all derivatives up
to order k = 7 (black lines). Blue and red lines present lower and upper bounds respectively.
For k = 8 we present the bound on the 8-th derivative on the intervals of the length h = 1

p .
On x axis we have time t. The data is as in Figure 3.6.

37



0.2
0.4
0.6

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.3
0.6
0.9

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.3
0.6
0.9

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.3
0.6
0.9

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.22
0.44
0.66

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.16
0.32
0.48

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.13
0.26
0.39

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

0.1
0.2
0.3

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

0.13
0.26
0.39

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

Figure 3.13: Dependence of the diameter of the interval set on the initial data diameter. After
initial 2 · p steps a history of the integration of some neighbourhood of a stable stationary solution
x ≡ 0 to system (2.14) was recorded every p steps for three runs with initial data of decreasing
diameter. On the x-axis we have the iteration steps, each bar is a diameter of the representation
coe�cient after p steps of iteration. The data is generated for tests 1a, 1b, 1c (black, white, gray
respectively). System (2.14), doubleton Lohner set representation and (8,7)-representation were
used for the integration process. The data is stored the �les steady_08_07_out_1/int_di.txt,
steady_08_07_out_2/int_di.txt and steady_08_07_out_3/int_di.txt respectively.

38



0.03
0.06
0.09

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.04
0.08
0.12

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.03
0.06
0.09

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.017
0.034
0.051

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.008
0.016
0.024

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.004
0.008
0.012

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.002
0.004
0.006

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

0.0012
0.0024
0.0036

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

0.0014
0.0028
0.0042

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

Figure 3.14: Dependence of the diameter of the representation on the grid size p. A history of
one integration of three representations of a stable stationary solution x ≡ 0 for system (2.14) for
parameter p ∈ {8, 16, 32} was recorded every p steps (black, white, gray respectively). The diameters
of corresponding representation coe�cients (i.e. that represents appropriate derivative at the same
time t) are drawn for comparision, i.e. xi,[p] for p = 8, x2·i,[p] for p = 16 and x4·i,[p] for p = 32.
Each bar is a diameter of the representation coe�cient after p steps of iteration. The tests used
are: 1c, 4, 5 (black, white, gray respectively). For all integrations the system (2.14) and interval
set representation were used. The data is stored the �les steady_08_07_out_3/int_di_p.txt,
steady_16_07_out/int_di_p.txt and steady_32_07_out/int_di_p.txt respectively.
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Now we set our attention to a more involved case - a stationary periodic solution. For
the periodic solution to equation (2.15) we have prepared an initial (p,n)-representations
x̄0 using non-rigorous version of the integrator. We have integrated an initial function
x(t) = sin

(
π
2 · t

)
for p · 4 steps and then we re�ned the resulting solution with the Newton

method applied for a suitably created non-rigorous Poincaré map until the accuracy of
about 10−14 was achieved. We denote the resulting representation with p̄ and then we
de�ne:

x̄
0,[0]
0 = p̄0,[0]

x̄
i,[k]
0 = p̄i,[k] + [−a · (p · b)k, b · (p · b)k], i ∈ {1, .., p}, k ∈ {0, .., n} (3.41)

x̄
i,[n+1]
0 = 10 · [−a · (p · b)n+2, a · (p · b)n+2], , i ∈ {1, .., p}.

(3.42)

The intuition behind this choice of the initial diameters is as follows: in the integration
process each coe�cient x̄i,[k]

i·h contribute to the coe�cient x̄i,[0]
i·h+h with additional factor hk =

1
pk

(we call it contribution factor). So, to achieve a equal contributions we should choose

x̄
i,[k]
i·h ≈ (hk)−1 = pk. For the remainder at k = n + 1 from equation (3.29) we get that

the contribution factor is hn+2. The parameters b may be chosen arbitrarily to get better
results. We created 5 test cases, three of them have diameter variants, exactly as in case
of stable stationary solutions discussed previously:

� Tests 1: p = 8, n = 7, a ∈ {0.4, 0.2, 0.1} respectively,

� Tests 2a, 2b, 2c: p = 8, n = 9, a ∈ {0.4, 0.2, 0.1} respectively,

� Tests 3a, 3b, 3c: p = 8, n = 11, a ∈ {0.4, 0.2, 0.1} respectively,

� Tests 4: p = 16, n = 7, a = 0.1,

� Tests 5: p = 32, n = 7, a = 0.1.

Our numerical experiments (see author's web page for data �les) suggests that for sys-
tem (2.15) it is best to choose b = 0.5.

Remark 15 We have also used heuristics from equation (3.41) for the stable stationary
solution to system (2.14) and it resulted in very rapid contraction, from the �rst iteration
of the integration process. Hovewer, due to this rapid contraction, the resulting �gures were
non-informative and not suitable for presentation. We re�er the author's web page for the
results from those numerical experiments.

We have run an iteration process as for stable stationary solution. Full history of the
integration is presented in Figures 3.15, 3.17 and 3.19, and the history recorded every p
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steps is presented in Figures 3.16, 3.18 and 3.20 for tests 1c, 2c, 3c respectively. In this case,
contrary to the stationary solution presented earlier, we have included all representations
from the history of the integration, including initial representation x̄0. Also we present
the solution together with all derivatives up to order k = 8 over the whole time interval
t = [−1, p · (n+ 1)] in Figures 4.11 and 4.12. The �rst one presents the numerical solution
together with the rigorous bounds, while the second one presents only the bounds, centered
at 0. The dependence of the resulting set diameter on the dimater of the initial set in
test 3 is presented in Figure 3.23. The in�uence of the diameter of the resulting set on
the choice of the parameter p (the grid spacing) is presented in Figure 3.24, where we have
used tests 1c, 4 and 5, and we have compared diameters of the corresponding representation
coe�cients. All other comparision charts may be found on the author's web page.

As we can see from Figures 3.15, 3.17 and 3.19 we have obtained a strong contraction on
the remainder, and some of the higher order derivative coe�cients. However we have failed
to obtain contraction for coe�cients with k ≤ 4, and we can see that the further integration
may result in the blow-up of the representation. We also see that the oscillatory properties
of the system are re�ected in the diameter of the set. This is due to the fact that we have
represented each set as a product of closed intervals. When rotated, the representation can
no longer be represented by the product of intervals, thus we must enclose it, introducing
overestimates. This is an example of the phenomena called wrapping e�ect. We will show
in Chapter 4 how to reduce this problem and we will analyze the performance of proposed
algorithms.

The dependence of the initial set diameter is very good, as presented in Figure 3.13. We
see that changing parameter a to a

2 results in decreasing the resulting set diameter about
two times as expected.

The dependence of the diameter on the step size (grid size) is better visible for the
periodic solution than in the case of stationary solution. We see that changing p from 8 to
16 leads to approximately 2 times smaller diameters of the resulting sets. Changing p from
16 to 32 is less visible, but it still gives better estimates.

Despite the fact that we do not get the contraction on all coe�cients, we see that the
integrator re�ects the strong contraction for the e�cients of high order, especially for the
remainders, that is what we wanted to achieve. In the Chapter 4 we will show how to
obtain better estimates for low order coe�cients (for small k).
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0.003
0.006
0.009

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.008
0.016
0.024

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.011
0.022
0.033

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.021
0.042
0.063

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.03
0.06
0.09

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.13
0.26
0.39

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.5
1.0
1.5

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

2.1
4.2
6.3

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

34.9
69.8

104.7

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

Figure 3.15: Diameters of the coe�cients of a sequence {Φn(x̄0)}n∈{0,..,8·(7+2)} (a full history)

for some (8,7)-representation x̄0 of a stable periodic orbit for system (2.15). Red horizontal line
marks the diameter of the representation of the initial function. On the x-axis we have the iteration
steps, each tick represents p steps of iteration. The data from test 1c was used. System (2.15),
interval set representation and (8,7)-representation were used for the integration process. The data
is stored in the �le periodic_08_07_out_3/int_di.txt.
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0.003
0.006
0.009

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.008
0.016
0.024

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.011
0.022
0.033

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.021
0.042
0.063

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.03
0.06
0.09

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.13
0.26
0.39

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.5
1.0
1.5

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

2.1
4.2
6.3

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

34.9
69.8

104.7

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

Figure 3.16: Diameters of the coe�cients of a sequence
{

Φ8·n(x̄0)
}
n∈{0,..,(7+2)} for some

(8,7)-representation x̄0 of a stable periodic orbit for system (2.15). Red horizontal line marks
the diameter of the representation of the initial function. On the x-axis we have the iteration steps,
each tick represents p steps of iteration. The data from test 1c was used. System (2.15), interval set
representation and (8,7)-representation were used for the integration process. The data is stored in
the �le periodic_08_07_out_3/int_di.txt.
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0.006
0.012
0.018

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.015
0.030
0.045

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.019
0.038
0.057

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.03
0.06
0.09

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.06
0.12
0.18

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.13
0.26
0.39

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.5
1.0
1.5

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

2.1
4.2
6.3

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

8.7
17.4
26.1

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

34.9
69.8

104.7

diam(x8,[9] ) diam(x7,[9] ) diam(x6,[9] ) diam(x5,[9] ) diam(x4,[9] ) diam(x3,[9] ) diam(x2,[9] ) diam(x1,[9] )

559.2
1118.4
1677.6

diam(x8,[10] ) diam(x7,[10] ) diam(x6,[10] ) diam(x5,[10] ) diam(x4,[10] ) diam(x3,[10] ) diam(x2,[10] ) diam(x1,[10] )

Figure 3.17: Diameters of the coe�cients of a sequence {Φn(x̄0)}n∈{0,..,8·(9+2)} (a full history)

for some (8,9)-representation x̄0 of a stable periodic orbit for system (2.15). Red horizontal line
marks the diameter of the representation of the initial function. On the x-axis we have the iteration
steps, each tick represents p steps of iteration. The data from test 2c was used. System (2.15),
interval set representation and (8,9)-representation were used for the integration process. The data
is stored in the �le periodic_08_09_out_3/int_di.txt.

44



0.006
0.012
0.018

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.015
0.030
0.045

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.019
0.038
0.057

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.03
0.06
0.09

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.06
0.12
0.18

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.13
0.26
0.39

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.5
1.0
1.5

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

2.1
4.2
6.3

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

8.7
17.4
26.1

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

34.9
69.8

104.7

diam(x8,[9] ) diam(x7,[9] ) diam(x6,[9] ) diam(x5,[9] ) diam(x4,[9] ) diam(x3,[9] ) diam(x2,[9] ) diam(x1,[9] )

559.2
1118.4
1677.6

diam(x8,[10] ) diam(x7,[10] ) diam(x6,[10] ) diam(x5,[10] ) diam(x4,[10] ) diam(x3,[10] ) diam(x2,[10] ) diam(x1,[10] )

Figure 3.18: Diameters of the coe�cients of a sequence
{

Φ8·n(x̄0)
}
n∈{0,..,(9+2)} for some

(8,9)-representation x̄0 of a stable periodic orbit for system (2.15). Red horizontal line marks
the diameter of the representation of the initial function. On the x-axis we have the iteration steps,
each tick represents p steps of iteration. The data from test 2c was used. System (2.15), interval set
representation and (8,9)-representation were used for the integration process. The data is stored in
the �le periodic_08_09_out_3/int_di.txt.
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0.01
0.02
0.03

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.026
0.052
0.078

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.03
0.06
0.09

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.1
0.2
0.3

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.21
0.42
0.63

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.3
0.6
0.9

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.5
1.0
1.5

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

2.1
4.2
6.3

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

8.7
17.4
26.1

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

34.9
69.8

104.7

diam(x8,[9] ) diam(x7,[9] ) diam(x6,[9] ) diam(x5,[9] ) diam(x4,[9] ) diam(x3,[9] ) diam(x2,[9] ) diam(x1,[9] )

139.8
279.6
419.4

diam(x8,[10] ) diam(x7,[10] ) diam(x6,[10] ) diam(x5,[10] ) diam(x4,[10] ) diam(x3,[10] ) diam(x2,[10] ) diam(x1,[10] )

559.2
1118.4
1677.6

diam(x8,[11] ) diam(x7,[11] ) diam(x6,[11] ) diam(x5,[11] ) diam(x4,[11] ) diam(x3,[11] ) diam(x2,[11] ) diam(x1,[11] )

9082.3
18164.6
27246.9

diam(x8,[12] ) diam(x7,[12] ) diam(x6,[12] ) diam(x5,[12] ) diam(x4,[12] ) diam(x3,[12] ) diam(x2,[12] ) diam(x1,[12] )

Figure 3.19: Diameters of the coe�cients of a sequence {Φn(x̄0)}n∈{0,..,8·(11+2)} (a full history)

for some (8,11)-representation x̄0 of a stable periodic orbit for system (2.15). Red horizontal line
marks the diameter of the representation of the initial function. On the x-axis we have the iteration
steps, each tick represents p steps of iteration. The data from test 3c was used. System (2.15),
interval set representation and (8,11)-representation were used for the integration process. The
data is stored in the �le periodic_08_11_out_3/int_di.txt.
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0.01
0.02
0.03

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.026
0.052
0.078

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.05
0.10
0.15

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.1
0.2
0.3

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.21
0.42
0.63

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.3
0.6
0.9

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.5
1.0
1.5

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

2.1
4.2
6.3

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

8.7
17.4
26.1

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

34.9
69.8

104.7

diam(x8,[9] ) diam(x7,[9] ) diam(x6,[9] ) diam(x5,[9] ) diam(x4,[9] ) diam(x3,[9] ) diam(x2,[9] ) diam(x1,[9] )

139.8
279.6
419.4

diam(x8,[10] ) diam(x7,[10] ) diam(x6,[10] ) diam(x5,[10] ) diam(x4,[10] ) diam(x3,[10] ) diam(x2,[10] ) diam(x1,[10] )

559.2
1118.4
1677.6

diam(x8,[11] ) diam(x7,[11] ) diam(x6,[11] ) diam(x5,[11] ) diam(x4,[11] ) diam(x3,[11] ) diam(x2,[11] ) diam(x1,[11] )

9082.3
18164.6
27246.9

diam(x8,[12] ) diam(x7,[12] ) diam(x6,[12] ) diam(x5,[12] ) diam(x4,[12] ) diam(x3,[12] ) diam(x2,[12] ) diam(x1,[12] )

Figure 3.20: Diameters of the coe�cients of a sequence
{

Φ8·n(x̄0)
}
n∈{0,..,(11+2)} for some

(8,11)-representation x̄0 of a stable periodic orbit for system (2.15). Red horizontal line marks
the diameter of the representation of the initial function. On the x-axis we have the iteration steps,
each tick represents p steps of iteration. The data from test 3c was used. System (2.15), interval set
representation and (8,11)-representation were used for the integration process. The data is stored
in the �le periodic_08_11_out_3/int_di.txt.
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1.13168
0.03168
1.06832

x[0]

2.24153
0.04153
2.15847

x[1]

3.19748
0.00252
3.20252

x[2]

2.87029
0.07029
2.72971

x[3]

4.36531
0.06531
4.23469

x[4]

7.13323
0.03323
7.06677

x[5]

12.3946
0.0054

12.4054
x[6]

18.1126
0.2126

17.6874
x[7]

72.757
2.857

67.043
x[8]

Figure 3.21: A graph of the stable periodic solution x(t) to (2.15), together with the all
derivatives up to order k = 7 (black lines). Blue and red lines present lower and upper
bounds respectively. For k = 8 we present the bound on the 8-th derivative on the successive
intervals of the length h = 1

p . On x axis we have time t. The data is as in Figure 3.15.
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0.003089
0.000089
0.002911

diam(x[0] )

0.007814
0.000814
0.006186

diam(x[1] )

0.009645
0.000645
0.008355

diam(x[2] )

0.01955
0.00055
0.01845

diam(x[3] )

0.0512
0.0012
0.0488

diam(x[4] )

0.2048025
0.0048025
0.1951975

diam(x[5] )

0.8192
0.0192
0.7808

diam(x[6] )

3.27682
0.07682
3.12318

diam(x[7] )

52.42885
0.02885

52.37115
diam(x[8] )

Figure 3.22: A graph of the lower and upper bounds for the stable periodic solution x(t)
to (2.15) and its derivatices shifted by the numerical approximation to the solution. On x
axis we have time t. The data is as in Figure 3.15.
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0.006
0.012
0.018

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.013
0.026
0.039

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.019
0.038
0.057

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.04
0.08
0.12

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.13
0.26
0.39

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.5
1.0
1.5

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

2.1
4.2
6.3

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

8.7
17.4
26.1

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

139.8
279.6
419.4

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

Figure 3.23: Dependence of the diameter of the interval set on the initial data diameter. A
history of the integration of some neighbourhood of a stable periodic orbit for system (2.15) was
recorded for three runs with initial data of decreasing diameter. On the x-axis we have the it-
eration steps, each bar is a diameter of the representation coe�cient after p steps of iteration.
The data is generated for tests 1a, 1b, 1c (black, white, gray respectively). System (2.15), in-
terval set representation and (8,7)-representation were used for the integration process. The data
is stored the �les periodic_08_07_out_1/int_di.txt, periodic_08_07_out_2/int_di.txt and
periodic_08_07_out_3/int_di.txt respectively.
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0.003
0.006
0.009

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.008
0.016
0.024

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.004
0.008
0.012

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.011
0.022
0.033

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.03
0.06
0.09

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.13
0.26
0.39

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.5
1.0
1.5

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

2.1
4.2
6.3

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

34.9
69.8

104.7

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

Figure 3.24: Dependence of the diameter of the representation on the grid size p. A history of
one integration of three representations of a stable periodic orbit for system (2.15) for parameter
p ∈ {8, 16, 32} was recorded every p steps (black, white, gray respectively). The diameters of
corresponding representation coe�cients (i.e. that represents appropriate derivative at the same
time t) are drawn for comparision, i.e. xi,[p] for p = 8, x2·i,[p] for p = 16 and x4·i,[p] for p = 32.
Each bar is a diameter of the representation coe�cient after p steps of iteration. The tests used
are: 1c, 4, 5 (black, white, gray respectively). For all integrations the system (2.15) and interval
set representation were used. The data is stored the �les periodic_08_07_out_3/int_di_p.txt,
periodic_16_07_out/int_di_p.txt and periodic_32_07_out/int_di_p.txt respectively.
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Chapter 4

Reducing the �Wrapping E�ect�:

Lohner set representation

Up till now we have only discussed basic algorithms which work theoretically in the set
arithmetics, with no computer precisions errors, and with ideal representation of sets. When
it comes to rigorous numerics implemented using the interval arithmetic we have two major
limitations: (1) set representation by the product of intervals and (2) the �niteness of the
computer representation of real numbers. The �rst of the limitations is a source of two
imminent negative e�ects: the wrapping e�ect and dependency problem.

Dependency problem arises when the same interval is used several times in a complicated
numerical formula, for example evaluating formula x− x using interval arithmetic for x =
[−1, 1] produces [−2, 2] instead of expected [0, 0]. This is very simple and rather arti�cial
example, but similar pattern occurs for example when computing values of function using
the Taylor expansion up to a given order, which is quite common in many applications.

The wrapping e�ect is a direct consequence of the fact that a result of a function
computed on an interval set must again be an interval set. It is visible when there exist
some kind of rotation in the system. The geometric intuition is simple in 2D: when we
rotate a rectangle we can get a rhomboidal shape. To produce interval enclosure of this
shape we need to introduce many unnecessary points - the corners. When the procedure
is repeated many times (iteration of the map/function) the errors may grow exponentially,
eventually 'blowing up' the whole solution. An illustration of this phenomenon is presented
in Figure 4.1.

Wrapping e�ect is usually regarded as more dangerous in many applications than the
dependency problem. It is even more dangerous in DDE setting as most of the eigenvalues
of the system are imaginary, giving rise to many rotations, even though the eigenvalues
associated with rotating directions are small. To reduce the wrapping e�ect during the
integration we are going to use the Lohner algorithm and Lohner sets[15].
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Figure 4.1: An illustration of the wrapping e�ect problem for a classical, idealized, math-
ematical pendulum ODE ẍ = −x. The picture shows a set of solutions in a phase space
(x, ẋ). The gray boxes present points of initial box moved by the �ow. The color boxes
presents the wrapping e�ect occurring at each step when we want to enclose the moving
points in a product of intervals in the basic coordinate system.

4.1 The Lohner algorithm for DDEs

To deal with the wrapping e�ect one usually employ an algorithm to locally change the
coordinate frame during the computations to minimize the size of overestimates introduced
by the wrapping e�ect. In our work we will use the method of Lohner[33, 15]. We would
like to brie�y recall the procedure in the case of ODEs. In the following we use the notation
[A] to stress that set A is an interval set. We assume that we have IVP:

x′(t) = G(x), G : RM → RM , (4.1)

x(0) = x0,

and for some step size 0 < h < 1 we are interested in the enclosures [xk] of xk = x(i · h)
for i ∈ N. We assume that we have a numerical method ΦG,h : RM → RM such that
ϕG(x, h) = ΦG,h(x) + RemG,h(x) for some RemG,h : RM → RM , RemG,h(x) ∈ O(hn+1).
Assume that we have enclosure [xk] for xk and we want to compute enclosure [xk+1] of xk+1

the lohner method is as follows:

1. compute rough enclosure W1: let [W1] be such that ϕG ([xk], [0, h]) ⊂W1,

2. Ak =
∂ΦG,h

∂x ([xk]),

3. let m([xk]) be a midpoint of the set [xk], then:

[xk+1] = ΦG,h (m ([xk])) + [Ak] · ([xk]−m([xk])) +RemG,h([W1]). (4.2)
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All the methods are also valid for non-autonomous r.h.s. G = G(x, t). We see that there
are three advantages of using Lohner method:

1. while the Rem is of order n+ 1 in h then the in�uence of rough enclosure W1 should
be small,

2. moving forward the enclosure is done by the numerical method only on the midpoint
of [xk], so there are no errors introduced by the evaluation on the whole set (in the
case of idealized numerics),

3. the interval matrix [Ak] gives us opportunity to change the coordinate frame, which
allows to control the wrapping e�ect. If we would represent [xk] as xk + [rk], where
xk = m([xk]) and [rk] = [xk]− xk then the equation (4.2) to be solved reduces to:

xk+1 = ΦG,h (xk) (4.3)

[rk+1] = [Ak] · ([rk]) +RemG,h([W1]). (4.4)

The quality of the wrapping e�ect control will depend on the way we will represent rk.
Namely:

1. Interval set : [rk] = ΠM
i=1Ij , Ij - interval,

2. Parallelepiped : [rk] = Bk · [r̃k], Bk is a matrix, [r̃k] is an Interval set,

3. Cuboid : [rk] = Qk · [r̃k], Bk is an orthogonal matrix, [r̃k] is an Interval set,

4. Doubleton: [rk] = Ck · [r0] + [r̃k], Ck is a matrix, [r̃k] is either an interval set, cuboid
or parallelepiped.

We are not going to discuss in details how to achieve conservation of the Lohner representa-
tion at each step, we only want to give an example for the case of Parallelepiped (method 2).
We see that for this representation the r.h.s. of equation (4.2) is equivalent to evaluating:

Bk+1 · [ ˜rk+1] = [Ak] ·Bk · [r̃k] +RemG,h([xk]), (4.5)

thus we usually set:

Bk+1 = m ([Ak] ·Bk) , (4.6)

[ ˜rk+1] =
(
B−1
k+1 · [Ak] ·Bk

)
· [r̃k] +B−1

k+1 ·RemG,h([xk]). (4.7)

We see that the choosing of Bk+1 leads (in ideal case) to B−1
k+1 · [Ak] · Bk being close to

identity, thus in the next step [ ˜rk+1] should not su�er from the wrapping e�ect.
The method 1 is equivalent to using a bare interval arithmetic. Other methods has their

own advantages and disadvantages, but making our integration scheme compatible with
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the standard Lohner notation (implementing Φ and Rem) will allow us to use the standard
Lohner sets implementation in the CAPD library, thus it will allow us to exchange the
representation as needed without need for reimplementing all Lohner sets. See the online
documentation [22] for details.

Since in our DDE integration scheme we can use the Lohner algorithm, as for t ∈ [0, 1] we
can regard solving equation (3.1) as solving non-autonomous ODE. In the case of DDEs we
must modify Algorithm 6. We divide it into two parts, just like in the Lohner algorithm: the
numerical method Φ in Algorithm 8 and the remainder Rem in Algorithm 9. The Jacobian
of the Φ at x will be computed using Automatic Di�erentiation. As you see we abused
notation here and used Φ to denote the numerical method without remainder. From now
on, in this chapter, the symbol Φ will be used as a name of the procedure in Algorithm 8
and symbol Rem will mean Algorithm 9.

Algorithm 8 Φ

Input: x̄t

Output: x̄t+h

Require: x̄t is a (p,n)-representation

Ensure: x̄t+h is a (p,n)-representation containing nonzero entries on (i, k) and (0, 0) for
1 ≤ i ≤ p and 0 ≤ k ≤ n, compute-Phi(x) = Φ(x) +Rem(x).

1: {x̄i,[k]
t+h}(i,k)∈{(i,k):2≤i≤p,0≤k≤n+1}∪{(1,0)} ← shift-part( x̄t )

2:
{
x̄

1,[k]
t+h

}
1≤k≤n

← compute-rep-k( n− 1, x̄
p,[0]
t , .., x̄

p,[n−1]
t , x̄

1,[0]
t+h )

3: x̄
0,[0]
t+h ←

∑n
k=0 x̄

1,[k]
t+h · h

k

Algorithm 9 Rem

Input: x̄t, x̄t+h

Output: r̄t+h

Require: x̄t is a (p,n)-representation, x̄t+h = Φ(x̄t)

Ensure: r̄t+h is a (p,n)-representation containing nonzero entries on (i, n + 1) and (0, 0)
for 1 ≤ i ≤ p, compute-Phi(x) = Φ(x) +Rem(x).

1: {r̄1,[n+1]
t+h , a∗, b∗} ← compute-remainder( x̄t, x̄

1,[0]
t+h , .., x̄

1,[n]
t+h )

2: r̄
0,[0]
t+h ← r̄

1,[n+1]
t+h · hn+1
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As it was show in [33] using the Lohner algorithm gives us chance to do C1 computations,
that is, to compute derivatives of the �ow w.r.t. initial conditions. This is due to the fact
that in each step of the Lohner algorithm we need to obtain the Jacobian of Φ. Using
this C1 data in the case of computing enclosures for Poincaré map images one can obtain
the Jacobian of this Poincaré map. The knowledge of the Jacobian may be used to �nd
a better �rst approximation to the stationary point via Newton method and/or to choose
good initial coordinate frame for the Lohner set, which might be important in computer
assisted proofs of covering relations. In the few next sections we want to give some formulas
that will be helpful in faster computation of the Jacobian for a single step of integration
and we will present method for obtaining the derivative of the �ow (non-rigorously).

4.2 Jacobian of the numerical method Φ

As it was shown, construction of robust rigorous integrators based on the Lohner algorithm
that avoids wrapping e�ect needs some method for computing Jacobian of the map Φ(·)
at the current point. Moreover those one-step Jacobians may be used to construct (non-
rigorous) derivatives of the �ow ∂ϕI

∂xJ
(x, tp(x)) needed in the computation of the Jacobian

of the �ows and/or Poincaré Maps. A straightforward method to compute DΦ(a) is to use
Automatic Di�erentiation for this task, but we will show that in the case of the rigorous
integrator of DDE it may be a huge loss of computing time, as the form of the Φ(·) allows
for vast optimization. Here we will present a faster method for computing the Jacobian of
Φ for a single step h = 1

p than by using Automatic Di�erentiation on all coe�cients of the
representation.

From now we will use the following notation in subscripts to simplify notation: (i, k) :=
index(i, k) as de�ned by the index function from De�nition 12. For a representations x̄

and x̄h = Φ(x̄) we will write Φ(i,k)(x̄) to indicate x̄i,[k]
h . Moreover, we will use capital letters

(eg. I, J) as the indices where it is not so important to remember grid point i and order
k. However, we will remember that I = index(i, k) for some unique i and k - the value of
i and k may be obtained from I via inverse function index−1:

index−1(1) = (0, 0), (4.8)

index−1(I) = ((I − 2)÷ (n+ 2) + 1, (I − 2) % (n+ 2)), I > 1,

where % and ÷ are integer modulo and division operators:

a÷ b =
⌊a
b

⌋
, a, b ∈ N (4.9)

a % b = a− b · (a÷ b), a, b ∈ N (4.10)

We will write N as the size of the representation, that is N := (n + 2) · p + 1. The
Jacobian of Φ at x̄ (denoted by DΦ(x̄)) is a N ×N matrix of partial derivatives ∂ΦI

∂xJ
(x̄) for

I, J ∈ {1, ..., N}.
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The integrator method Φ(·) presented in algorithm 8 was divided into two parts: the shift
part presented in Algorithm 3 and the forward part that uses procedure compute-rep-k

from the algorithm 4 and the Taylor sum that computes x̄0,[0]
h . From Algorithm 3 it is clear

that:

∂Φ(i,k)

∂x(j,l)
(x̄) = 1, j = i− 1, l = k, (4.11)

∂Φ(i,k)

∂x(j,l)
(x̄) = 0, otherwise, (4.12)

for i ≥ 2 and:

∂Φ(1,0)

∂x(j,l)
(x̄) = 1, j = 0, l = 0, (4.13)

∂Φ(1,0)

∂x(j,l)
(x̄) = 0, otherwise. (4.14)

Using those equalities we saved computational time for many of the coe�cients of the
Jacobian DxΦ(x̄) reducing the size of the problem from O

(
(p · n)2

)
to O(p · n2). Namely,

we need only to compute
∂Φ(1,k)

∂x(j,l)
(x̄) for k > 1 (that is, (n+ 1) ·N elements) and

∂Φ(0,0)

∂x(j,l)
(x̄)

(that is, 1 ·N elements), which comes from the forward part. We will further show that we
may again set some of them explicitly to 0.

From the formulation of Algorithm 4 we see that Φ(1,k) depends on k + 1 variables,

namely x̄0,[0]
0 and k values in the past; x̄p,[0]

0 , ..., x̄
p,[k−1]
0 . For k = n it gives maximum of

n + 1 variables x(0,0), x(p,0), ..., x(p,n−1). For all others, we can set
∂Φ(1,k)

∂x(j,l)
(x̄) to 0, thus

reducing number of elements to (n+ 1) · (n+ 1) ∈ O(n2).

Finally, the formula for
∂Φ(0,0)

∂x(j,l)
(x̄) comes from the fact that Φ(0,0)(x̄) is simply a Taylor

summation of x̄1,[k]
h and from the fact that x̄1,[0]

h = Φ(1,0)(x̄0) = x̄
0,[0]
0 (see Algorithm 3). As

we stated previously, each x̄1,[k]
h depends only on x̄0,[0]

0 and x̄p,[0]
0 , ..., x̄

p,[k−1]
0 , so the value

Φ(0,0)(x̄) depends also on x̄0,[0]
0 and x̄p,[0]

0 , ..., x̄
p,[n−1]
0 . Finally, the a∗ coe�cient in the sum

is dependent also on x̄
p,[n]
0 . Thus, we obtain O(n2) coe�cients in the Jacobian that are

needed to be computed.
The graphical idea of the dependence of the elements of the Jacobian for a single step

method is shown in Figure 4.2.
All those computations allowed us to reduce the input and output size to the Auto-

matic Di�erentiation procedure to the O(n) and O(n2) respectively. Thus, the problem
of computing the Jacobian in the each step of the integration process does not depend on
the number of interpolation points but only on the order of the interpolation. Still, it has
an impact on the size of the Jacobian matrix, and thus on the complexity of basic matrix
operations performed in each step of the Lohner algorithm.
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Figure 4.2: Dependence of the elements of the Jacobian for the single step method Φ(·) for
a (3,2)-representation. Star (?) represents some meaningful value, empty space represent
value 0. As we can see the matrix is singular, as it has empty last column and n+2-nd row.
This is due to the fact that those elements corresponds to the remainders x̄p,[n+1]

0 (which

is not used in the Φ procedure) and x̄1,[n+1]
h (which is computed in the Rem procedure),

respectively.

58



4.3 Jacobian of a Poincaré map

4.3.1 Reduced Poincaré map and it's Jacobian matrix

As a side e�ect of using the Lohner set representation, we are able to compute Jacobian of
the Poincaré map associated with the semi�ow ϕ and some section S. We will assume that
S is representable, in the sense of De�nition 17:

De�nition 17 We say that an (s,a)-section S is (p,n)-representable if there exist a �nite
dimensional mapping s̄ : RM → R for M = 1 + p · (n + 2) such that for any (p,n)-
representation f̄ we have:

s̄
(
f̄
)

= s
(
Supp(f̄)

)
(4.15)

We call the set S̄ = {x ∈ RM : s̄(x) = a} the representation of the (s,a)-section S.

Remark 16 An example of a (p, n)-representable section for any n and p is an (s,a)-section
S de�ned with s(f) := f(0) and with any a ∈ R. The corresponding �nite dimensional
section is then de�ned simply with s̄(x) = π1(x).

An example of a (2, n)-representable but not (3, n)-representable section for any n > 1
is an (s, a)-section S de�ned with s(f) := f

(
1
2

)
and with any a ∈ R.

For the simplicity of notation from now on we are using symbol P to denote Poincaré
map PS,ϕ and we assume that S and ϕ are given and we assume that we have some (n,p)-
representable (s,a)-section S with representation s̄. We assume that we are working in some
neighbourhood f̄ of a function g such that Pϕ,S(g) = g and we assume that tp(f) exists for
any f ∈ Supp(f̄) and tp(f) ≥ 1.

Let g ∈ ḡ and let xg be a solution to the equation (3.1) with initial function g. We
have Pϕ,S(g) = ϕ (g, tp(g)) = xgtp(g) and we can de�ne x ∈ RM and P (x) ∈ RM for

M = (n+ 2) · p+ 1 such that:

x(0,0) = g(0) (4.16)

x(i,k) = g[k] (−i · h) (4.17)

P (x)(0,0) = xgtp(g)(0) (4.18)

P (x)(i,k) =
1

k
·
∂xgtp(g)

∂t
(−i · h) (4.19)

for 1 ≤ i ≤ p, 0 ≤ k ≤ n. We call the map P (·) a reduced Poincaré map. We see that
the reduced Poincaré map is hard to compute explicitly, but we can compute it rigorously
using the integrator scheme. Since it closely resembles real Poincaré map Pϕ,S , but exists
in a �nite dimensional space closely resembling our space of (p,n)-representations, we can
use its Jacobian matrix to achieve two important goals:
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� �nd better approximation to a priori chosen initial set ḡ, for example using nonrigorous
Newton algorithm,

� choose better initial coordinate frame for the Lohner set representation, by computing
(nonrigorously) eigen vectors of the Jacobian matrix DP .

Remark 17 The value tp(x) usually is not a multiplicity of base step h, thus it is neccessary
to allow other time steps in the integration process. We will deal with this problem in
Chapter 5.

In this section, we denote by x the element of RM and by xJ the J-th element of the
vector x, that is xJ = πJ(x), J ∈ {1, ...,M}. For the Poincaré map P we will denote by
PI the I-th component of P , that is a function PI : RM → R, PI(x) = πI (P (x)). Using
equation (4.8) we know that I and J are given by:

I = index(i, k) (4.20)

J = index(j, l) (4.21)

for some i, k, j, l. We will use indices I, J to simplify notation where it is appropriate.
For an index I we denote by

ϕI(x, t) = xt(0), I = index(0, 0) (4.22)

ϕI(x, t) =
1

k
· ∂xt
∂t

(
−i · 1

p

)
, I = index(i, k), (4.23)

thus we can simply write:
P (x)I = ϕI (x, tp(x)) . (4.24)

Now, for I and J , 1 ≤ I, J ≤M we want to compute:

∂PI
∂xJ

=
∂ϕI
∂xJ

(x, tp(x)) +
∂ϕI
∂t

(x, tp(x)) · ∂tp
∂xJ

(x) (4.25)

This equation resembles the standard formula in the ODE setting [33]. The �rst term
∂ϕI
∂xJ

(x, tp(x)) may be computed numerically using single-step Jacobians of the integrator -

we call it derivative of the �ow. The second term ∂ϕI
∂t (x, tp(x))· ∂tp∂xJ

(x) is called a correction
term. It can be computed using the section S and the implicit function theorem. Here we
would like to reformulate the calculations presented in [33] to the case of DDEs as there
are some minor subtleties in the equations.
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4.3.2 Correction to the Jacobian of the Poincaré Map

We would like to compute the correction term ∂ϕI
∂t (x, tp(x)) · ∂tp∂xJ

(x).

The term ∂ϕI
∂t (x, tp(x)) may be obtained from equation (3.1). In the ODE setting, it

corresponds to the vector �eld where simply we have ∂ϕI
∂t (x, tp(x)) = FI(P (x0)). In DDE

case it is more involved as in our case r.h.s of equation x′ = f(x(t− 1), x(t)) depends only
on the past and present value of the function and it returns only single scalar (so we do not
in fact have fI). We need to look closer at the ϕI (x, tp(x)).

By equation (4.24) we have:

ϕI (x0, tp(x0)) =
1

k!
· ∂

kx

∂tk

(
tp(x0)− i

p

)
(4.26)

where I = index(i, k) and x on the r.h.s is a solution to DDE on [−1, tp(x0)], with the
initial function x0. Now we have:

1

k!

∂kx

∂tk

(
tp(x0)− i

p

)
=

1

k!
·
∂kxtp(x0)

∂tk

(
− i
p

)
, (4.27)

that is, we have changed a solution x to a point xtp(x0) in the phase-space C0, and we
changed time variable accordingly. We remember that P (x) = xtp(x0). Now we compute:

∂ϕI
∂t

(x0, tp(x0)) =
∂

∂t

1

k!
·
∂kxtp(x0)

∂tk

(
− i
p

)
= (4.28)

=
1

k!
·
∂k+1xtp(x0)

∂tk+1

(
− i
p

)
= (4.29)

= (k + 1) · 1

(k + 1)!
·
∂k+1xtp(x0)

∂tk+1

(
− i
p

)
. (4.30)

Now, for k < n we have:

∂ϕI
∂t

(x0, tp(x0)) = (k + 1) · ϕI+1 (x0, tp(x0)) = (k + 1) · PI+1(x0) (4.31)

because index(i, k + 1) = index(i, k) + 1 = I + 1. For k = n we may use:

∂ϕI
∂t

(x0, tp(x0)) =
1

n
· F [n]

(
x[0] (tp(x0)− 1) , .., x[n] (tp(x0)− 1) , x[0] (tp(x0)) , x[n] (tp(x0))

)
(4.32)

This is the reason why we have assumed that tp(x) ≥ 1 at the beginning of this section.

As in [33] to compute ∂tp
∂xJ

(x) we use section S and the implicit function theorem. We
assume that S has a (p,n)-representation s̄. We have:

s̄ (P (x0)) = 0⇒ s̄ (ϕ(x0, tp(x0))) = 0 (4.33)
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taking derivative ∂
∂xJ

we get:

∂

∂xJ
s̄ (ϕ(x0, tp(x0))) = 0 (4.34)

〈
∇s̄ (P (x0)) ,

(
∂

∂xJ
ϕ (x0, tp(x0))

)〉
= 0 (4.35)

The . in the above equation is a standard scalar product in RM . We use (4.25) to get:〈
∇s̄ (P (x0)) ,

(
∂ϕ

∂xJ
(x, tp(x)) +

∂ϕ

∂t
(x, tp(x)) · ∂tp

∂xJ
(x)

)〉
= 0, (4.36)

where by ∂ϕ
∂xJ

we mean a vector of derivatives
(
∂ϕ1

∂xJ
, ..., ∂ϕN

∂xJ

)
. After reorganization:〈

∇s̄ (P (x0)) ,
∂ϕ

∂t
(x, tp(x))

〉
· ∂tp
∂xJ

(x) = −
〈
∇s̄ (P (x0)) .

∂ϕ

∂xJ
(x, tp(x))

〉
, (4.37)

�nally:

∂tp
∂xJ

(x) = −

〈
∇s̄ (P (x0)) , ∂ϕ∂xJ (x, tp(x))

〉
〈
∇s̄ (P (x0)) , ∂ϕ∂t (x, tp(x))

〉 . (4.38)

4.4 Doubleton Lohner set performance in rigorous DDE inte-

gration

We have performed the same tests as in Section 3.3, but instead using interval sets we have
used the doubleton Lohner set (Lohner representation 4): x = x0 + C · r0 + r, where r is
an interval set.

We run tests as in the case of basic tests in Section 3.3. Here we brie�y present some
of the results, rest of them can be found on the author's web page. Full history (after 2 · p
initial steps in case of stationary solution) of the integration process for (8,7)-representation
for both stationary and periodic solution is presented, respectively, in Figures 4.3 and 4.9
The history recorded every p steps (after 2 · p initial steps in case of stationary solution) is
presented in Figures 4.4 and 4.10. Also we present the solutions together with all derivatives
up to order k = 8 over the whole time interval t = [−1, p · (n+ 1)] (t = [p, p · (n+ 1)] in the
case of stationary solution) in Figures 4.5, 4.11 and 4.12. The �rst one is for the stationary
solution to equation (2.14), the two others are for periodic solution to equation (2.15).
The dependence of the resulting set diameter on the diameter of the initial set in test 3 is
presented in Figures 4.6 and 4.13. The in�uence of the diameter of the resulting set on the
choice of the parameter p (the grid spacing) is presented in Figures 4.7 and 4.14.

62



We see that the strong contraction on the high order coe�cients is maintained and we
also get the contraction for all or almost all other coe�cients, contrary to the interval set
representation. To better see the advantage of the Lohner set over the interval set we also
included comparison of the set representations in Figures 4.8 and 4.15. The advantage of
using Lohner sets is more clear in the case of periodic orbit than in the case of strongly at-
tracting stationary solution. Still, in both cases, we obtain better estimates on the diameter
of the set if we use doubleton Lohner set representation.

Remark 18 We have also done numerical experiments for doubleton Lohner sets, where
the error part r was represented by the cuboid set (QR decomposition was used) instead
of interval set. Surprisingly, this approach gave worse results and sometimes behaved as
classical interval set. We attribute this strange behaviour to the problem of computing QR
decomposition for matrices of very big dimensions (in our case the dimension of the Jacobian
matrix is p · (n+ 2) + 1). This phenomena should be studied in the future.
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0.029
0.058
0.087

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.03
0.06
0.09

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.025
0.050
0.075

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.014
0.028
0.042

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.006
0.012
0.018

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.003
0.006
0.009

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.0017
0.0034
0.0051

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

0.001
0.002
0.003

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

0.0013
0.0026
0.0039

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

Figure 4.3: Diameters of the coe�cients of a sequence {Φn(x̄0)}n∈{16,..,8·(7+2)} (a full history after

2 ·p steps) for some (8,7)-representation x̄0 of a stable stationary solution x ≡ 0 for system (2.14).
Red horizontal line marks the diameter of the representation of the initial function. On the x-axis
we have the iteration steps, each tick represents p steps of iteration. The data from test 1c was
used. System (2.14), doubleton Lohner set representation and (8,7)-representation were used for
the integration process. The data is stored in the �le steady_08_07_out_3/rect_di.txt.
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0.029
0.058
0.087

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.03
0.06
0.09

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.025
0.050
0.075

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.014
0.028
0.042

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.006
0.012
0.018

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.003
0.006
0.009

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.0017
0.0034
0.0051

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

0.001
0.002
0.003

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

0.0013
0.0026
0.0039

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

Figure 4.4: Diameters of the coe�cients of a sequence
{

Φ8·n(x̄0)
}
n∈{2,..,(7+2)} for some

(8,7)-representation x̄0 of a stable stationary solution x ≡ 0 for system (2.14). Red horizon-
tal line marks the diameter of the representation of the initial function after 2 · p steps. On the
x-axis we have the iteration steps, each tick represents p steps of iteration. The data from test 1c
was used. System (2.14), doubleton Lohner set representation and (8,7)-representation were used
for the integration process. The data is stored in the �le steady_08_07_out_3/rect_di.txt.
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0.0449513
0.0009513
0.0430487

x[0]

0.0549513
0.0049513
0.0450487

x[1]

0.0384757
0.0004757
0.0375243

x[2]

0.0211919
0.0001919
0.0208081

x[3]

0.0104563
0.0004563
0.0095437

x[4]

0.00504626
0.00004626
0.00495374

x[5]

0.00263688
0.00003688
0.00256312

x[6]

0.00162999
0.00002999
0.00157001

x[7]

0.00198148
0.00008148
0.00181852

x[8]

Figure 4.5: A graph of the solution x(t) ≡ 0 to (2.14), together with the all derivatives up to
order k = 7 (black lines). Blue and red lines present lower and upper bounds respectively.
For k = 8 we present the bound on the 8-th derivative on the intervals of the length h = 1

p .
On x axis we have time t. The data is as in Figure 4.3.
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0.18
0.36
0.54

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.29
0.58
0.87

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.29
0.58
0.87

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.24
0.48
0.72

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.18
0.36
0.54

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.13
0.26
0.39

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.1
0.2
0.3

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

0.08
0.16
0.24

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

0.11
0.22
0.33

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

Figure 4.6: Dependence of the diameter of the interval set on the initial data diameter. After
initial 2 · p steps a history of the integration of some neighbourhood of a stable stationary solution
x ≡ 0 to system (2.14) was recorded every p steps for three runs with initial data of decreasing
diameter. On the x-axis we have the iteration steps, each bar is a diameter of the representation
coe�cient after p steps of iteration. The data is generated for tests 1a, 1b, 1c (black, white, gray
respectively). System (2.14), doubleton Lohner set representation and (8,7)-representation were
used for the integration process. The data is stored the �les steady_08_07_out_1/rect_di.txt,
steady_08_07_out_2/rect_di.txt and steady_08_07_out_3/rect_di.txt respectively.
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0.029
0.058
0.087

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.03
0.06
0.09

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.025
0.050
0.075

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.014
0.028
0.042

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.006
0.012
0.018

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.003
0.006
0.009

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.0017
0.0034
0.0051

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

0.001
0.002
0.003

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

0.0013
0.0026
0.0039

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

Figure 4.7: Dependence of the diameter of the representation on the grid size p. A history of one
integration of three representations of a stable stationary solution x ≡ 0 for system (2.14) for param-
eter p ∈ {8, 16, 32} was recorded every p steps after initial 2·p steps (black, white, gray respectively).
The diameters of corresponding representation coe�cients (i.e. that represents appropriate deriva-
tive at the same time t) are drawn for comparision. Each bar is a diameter of the representation
coe�cient after p steps of iteration. The tests used are: 1c, 4, 5 (black, white, gray respectively).
For all integrations the system (2.14) and doubleton Lohner set representation were used. The data
is stored the �les steady_08_07_out_3/rect_di_p.txt, steady_16_07_out/rect_di_p.txt and
steady_32_07_out/rect_di_p.txt respectively.
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0.03
0.06
0.09

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.04
0.08
0.12

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.03
0.06
0.09

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.017
0.034
0.051

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.008
0.016
0.024

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.004
0.008
0.012

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.002
0.004
0.006

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

0.0012
0.0024
0.0036

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

0.0014
0.0028
0.0042

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

Figure 4.8: Comparision between basic interval numeric method (black) and a Lohner set rep-
resentation by the doubleton x0 + C · r0 + B · r (white). In both cases we have integrated the
same initial representation of a stable stationary solution x ≡ 0 to system (2.14) and we have used
interval set representation and (8,7)-representation. On the chart we present the diameter of the
interval hull of each representation coe�cient every 8 steps of the integration. The data from test
1c was used. The data is stored in the �le steady_08_07_out_3/int_di.txt.
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0.00018
0.00036
0.00054

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.0005
0.0010
0.0015

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.0021
0.0042
0.0063

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.008
0.016
0.024

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.03
0.06
0.09

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.13
0.26
0.39

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.5
1.0
1.5

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

2.1
4.2
6.3

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

34.9
69.8

104.7

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

Figure 4.9: Diameters of the coe�cients of a sequence {Φn(x̄0)}n∈{0,..,8·(7+2)} (a full history) for

some (8,7)-representation x̄0 of a stable periodic orbit for system (2.15). Red horizontal line marks
the diameter of the representation of the initial function. On the x-axis we have the iteration steps,
each tick represents p steps of iteration. The data from test 1c was used. System (2.15), doubleton
Lohner set representation and (8,7)-representation were used for the integration process. The data
is stored in the �le periodic_08_07_out_3/rect_di.txt.
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0.00018
0.00036
0.00054

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.0005
0.0010
0.0015

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.0021
0.0042
0.0063

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.008
0.016
0.024

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.03
0.06
0.09

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.13
0.26
0.39

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.5
1.0
1.5

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

2.1
4.2
6.3

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

34.9
69.8

104.7

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

Figure 4.10: Diameters of the coe�cients of a sequence
{

Φ8·n(x̄0)
}
n∈{0,..,(7+2)} for some

(8,7)-representation x̄0 of a stable periodic orbit for system (2.15). Red horizontal line marks
the diameter of the representation of the initial function. On the x-axis we have the iteration steps,
each tick represents p steps of iteration. The data from test 1c was used. System (2.15), doubleton
Lohner set representation and (8,7)-representation were used for the integration process. The data
is stored in the �le periodic_08_07_out_3/rect_di.txt.
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1.13134
0.03134
1.06866

x[0]

2.23987
0.03987
2.16013

x[1]

3.19744
0.00256
3.20256

x[2]

2.87027
0.07027
2.72973

x[3]

4.33181
0.03181
4.26819

x[4]

7.12293
0.02293
7.07707

x[5]

12.3717
0.0717

12.2283
x[6]

18.0919
0.1919

17.7081
x[7]

72.757
2.857

67.043
x[8]

Figure 4.11: A graph of the stable periodic solution x(t) to (2.15), together with the all
derivatives up to order k = 7 (black lines). Blue and red lines present lower and upper
bounds respectively. For k = 8 we present the bound on the 8-th derivative on the successive
intervals of the length h = 1

p . On x axis we have time t. The data is as in Figure 4.9.
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0.00027
0.00001
0.00025

diam(x[0] )

0.0008
0.0000
0.0008

diam(x[1] )

0.0032
0.0000
0.0032

diam(x[2] )

0.0128
0.0008
0.0112

diam(x[3] )

0.0512
0.0012
0.0488

diam(x[4] )

0.2048025
0.0048025
0.1951975

diam(x[5] )

0.8192
0.0192
0.7808

diam(x[6] )

3.27682
0.07682
3.12318

diam(x[7] )

52.42885
0.02885

52.37115
diam(x[8] )

Figure 4.12: A graph of the lower and upper bounds for the stable periodic solution x(t)
to (2.15) and its derivatices shifted by the numerical approximation to the solution. On x
axis we have time t. The data is as in Figure 4.9.
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0.0007
0.0014
0.0021

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.0021
0.0042
0.0063

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.008
0.016
0.024

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.03
0.06
0.09

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.13
0.26
0.39

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.5
1.0
1.5

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

2.1
4.2
6.3

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

8.7
17.4
26.1

diam(x8,[7] ) diam(x7,[7] ) diam(x6,[7] ) diam(x5,[7] ) diam(x4,[7] ) diam(x3,[7] ) diam(x2,[7] ) diam(x1,[7] )

139.8
279.6
419.4

diam(x8,[8] ) diam(x7,[8] ) diam(x6,[8] ) diam(x5,[8] ) diam(x4,[8] ) diam(x3,[8] ) diam(x2,[8] ) diam(x1,[8] )

Figure 4.13: Dependence of the diameter of the interval set on the initial data diameter. A history
of the integration of some neighbourhood of a stable periodic orbit for system (2.15) was recorded
for three runs with initial data of decreasing diameter. On the x-axis we have the iteration steps,
each bar is a diameter of the representation coe�cient after p steps of iteration. The data is
generated for tests 1a, 1b, 1c (black, white, gray respectively). System (2.15), doubleton Lohner
set representation and (8,7)-representation were used for the integration process. The data is
stored the �les periodic_08_07_out_1/rect_di.txt, periodic_08_07_out_2/rect_di.txt and
periodic_08_07_out_3/rect_di.txt respectively.
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diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )
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Figure 4.14: Dependence of the diameter of the representation on the grid size p. A history of
one integration of three representations of a stable periodic orbit for system (2.15) for parameter
p ∈ {8, 16, 32} was recorded every p steps (black, white, gray respectively). The diameters of
corresponding representation coe�cients (i.e. that represents appropriate derivative at the same
time t) are drawn for comparision, i.e. xi,[p] for p = 8, x2·i,[p] for p = 16 and x4·i,[p] for p = 32. Each
bar is a diameter of the representation coe�cient after p steps of iteration. The tests used are: 1c,
4, 5 (black, white, gray respectively). For all integrations the system (2.15) and doubleton Lohner
set representation were used. The data is stored the �les periodic_08_07_out_3/rect_di_p.txt,
periodic_16_07_out/rect_di_p.txt and periodic_32_07_out/rect_di_p.txt respectively.

75



0.0016
0.0032
0.0048

diam(x8,[0] ) diam(x7,[0] ) diam(x6,[0] ) diam(x5,[0] ) diam(x4,[0] ) diam(x3,[0] ) diam(x2,[0] ) diam(x1,[0] ) diam(x0,[0] )

0.003
0.006
0.009

diam(x8,[1] ) diam(x7,[1] ) diam(x6,[1] ) diam(x5,[1] ) diam(x4,[1] ) diam(x3,[1] ) diam(x2,[1] ) diam(x1,[1] )

0.004
0.008
0.012

diam(x8,[2] ) diam(x7,[2] ) diam(x6,[2] ) diam(x5,[2] ) diam(x4,[2] ) diam(x3,[2] ) diam(x2,[2] ) diam(x1,[2] )

0.011
0.022
0.033

diam(x8,[3] ) diam(x7,[3] ) diam(x6,[3] ) diam(x5,[3] ) diam(x4,[3] ) diam(x3,[3] ) diam(x2,[3] ) diam(x1,[3] )

0.03
0.06
0.09

diam(x8,[4] ) diam(x7,[4] ) diam(x6,[4] ) diam(x5,[4] ) diam(x4,[4] ) diam(x3,[4] ) diam(x2,[4] ) diam(x1,[4] )

0.13
0.26
0.39

diam(x8,[5] ) diam(x7,[5] ) diam(x6,[5] ) diam(x5,[5] ) diam(x4,[5] ) diam(x3,[5] ) diam(x2,[5] ) diam(x1,[5] )

0.5
1.0
1.5

diam(x8,[6] ) diam(x7,[6] ) diam(x6,[6] ) diam(x5,[6] ) diam(x4,[6] ) diam(x3,[6] ) diam(x2,[6] ) diam(x1,[6] )

2.1
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34.9
69.8

104.7
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Figure 4.15: Comparision between basic interval numeric method (black) and a Lohner set repre-
sentation by the doubleton x0 + C · r0 + B · r (white). In both cases we have integrated the same
initial representation of a stable periodic solution to system (2.15) and we have used interval set
representation and (8,7)-representation. On the chart we present the diameter of the interval hull
of each representation coe�cient every 8 steps of the integration. The data is stored in the �le
periodic_08_07_out_3/int_di.txt.
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Chapter 5

Poincaré maps for DDEs

In this chapter we consider the following question: how we can rigorously compute the
Poincaré map PS,ϕ associated with the system (3.1)? Namely, we consider the following
problem: given the representation x̄0 such that tp(x0) exists for any g ∈ Supp(x̄) �nd a
representation x̄tp(x0) such that PS,ϕ(x0) ∈ Supp(x̄tp(x0)).

For this purpose we will use the rigorous integrator discussed in Chapter 3. We must
however notice, that there is a problem with the integrator: a �xed step size. The �xed
step size disallow to move a representation as close to section as possible and, in turn, it
may prevent to produce small image of the initial set on the section, unless we choose a
very small h at the beginning of the iteration process. But a very small step increases size
of the representation and the number of iteration steps needed to reach the section, thus
making the integration very slow. An alternative would be to construct a procedure that
can create representation of a solution after arbitrary step size 0 < ε < 1

p . Such a procedure
would be used to do the last step of the computation of map P , after moving close enough
to the section using basic integrator from Section 3.2.

In this chapter we propose two procedures (called for convenience the ε-methods) that
given a representation of x compute a representation of ϕ(x, ε) for step size 0 < ε < 1

p .
We compare their e�ectiveness in integration of the neighbourhood of exemplary periodic
solutions both stable and hyperbolic with one or two unstable directions. We also discuss
application of those methods to compute Poincaré maps, their limitations and the problem
with discontinuities imminent in the DDEs (see Remark 19).

Remark 19 Here we want to stress that, in general, we will not be able to guarantee that
ϕ (x0, tp(x0)) ∈ x̄tp(x0) for each x0 ∈ Supp(x̄0)! Below we present two examples where (p,n)-

representable functions cannot be represented with the same (p,n)-representation after ar-
bitrary time step.

� Example 1: Assume that r.h.s. f of (3.1) is

f(x, y) = 0, ∀x, y ∈ R (5.1)
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and let x0(t) be an initial function such that:

x0(t) =

{
1
2 + t −1 ≤ t ≤ −1

2

0 −1
2 ≤ t ≤ 0

(5.2)

We see that x(t) is continuous on [−1, 0] and C∞ on each interval
[
−i · 1

2 ,−i ·
1
2 + 1

2

]
thus we can construct a (2,n)-representation for any n ∈ N. We cannot however
construct such representations for xε = ϕ(x, ε) for 0 < ε < h, due to the existing
discontinuity at t = −1

2 in x(t) which propagates to a discontinuity at t = −1
2 − ε in

xε(t).

� Example 2: Assume r.h.s. f of (3.1) as in Example 1 and assume two initial
functions:

x0(t) = 1 (5.3)

and
y0(t) = t (5.4)

which give rise to solutions x(t) and y(t) respectively. Let xε = ϕ(x0, ε) and yε =
ϕ(y0, ε) for 0 < ε < h, namely:

xε(t) = 1, t ∈ [−1, 0] (5.5)

yε(t) =

{
t t ∈ [−1,−ε]
0 t ∈ [−ε, 0]

. (5.6)

We see that xε can be represented with a (p,n)-representation for any p and n while yε
cannot as its derivative has a discontinuity at t = −ε. This phenomenon is possible
as x0(t) is aligned to ϕ in the sense that x′(0−) = f (x(−1), x(0)) = x′(0+). In the
case of y(t) we have y′(0−) = 1 6= 0 = f (y(−1), y(0)) = y′(0+), thus the solution yε
is only continuous.

Having those examples in mind, we see that we will only be able to investigate a re-
striction of P to some subset of phase-space of regularity high enough for our methods to
work (such as x(t) in Example 2). This however will be no issue in computer assisted
proofs, as we assume high regularity of r.h.s. of equation (3.1) and we will be applying our
methods to investigate solutions for which we will be able to assure their regularity a prori
using smoothing property of the DDE. We discuss this issue further in this chapter in the
Section 5.4.

Remark 20 To compute Poincaré maps we also need to estimate the �nal time step ε =
[ε1, ε2] such that tp(x) ∈ h ·N +ε for some N ∈ N and all x ∈ Supp(x̄0). We do not discuss
this issue here, as it is rather simple matter and may be resolved using various approaches
like Newton method, binsearch algorithm or other heuristic algorithms.
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5.1 First ε-method

Formula for ci,[k]
t (ε) in equation (3.11) from Lemma 9 together with a simple estimation of

the remainder part of the representation immediately brings the �rst ε-methodH1 presented
in the algorithm 10.

Algorithm 10 H1

Input: ε, x̄0, x̄h

Output: x̄ε

Require: 0 < ε < 1
p x̄h = Φ(x0),

1: for k : 0 ≤ k ≤ n, i : 1 ≤ i ≤ p do

2: x̄
i,[k]
ε ← compute-c-k( x̄0, i, k, ε )

3: end for

4: for i : 1 ≤ i ≤ p do

5: x̄
i,[n+1]
ε ← intervalHull(x̄i,[n+1]

0 , x̄
i,[n+1]
h )

6: end for

7: x̄
0,[0]
ε ←

∑n+1
k=0 x̄

1,[k]
h · εk

The idea behind Algorithm 10 is very simple. Let x0 ∈ x̄0 and let x(t) be a solution to
(3.1) with the initial function x0. Then from Lemma 9 we get that:

x[k]
ε

(
− i
p

)
= x[k]

(
− i
p

+ ε

)
∈ ci,[k]

0 (ε) (5.7)

for any 1 ≤ i ≤ p and 0 ≤ k ≤ n. For the x̄0,[0]
ε we use simply equation (3.6) on the

representation x̄h = Φ(x̄0). What is left to compute are the remainders, but for them, as
we said in the introduction to this chapter, we need to restrict ourselves to a subset of
functions in Supp(x̄0) of regularity high enough.

Lemma 21 Let x̄0 be a representation and let x̄ε be an output from Algorithm 10 executed
for arguments ε, x0, Φ(x0). Assume that function x(t) of class Cn+1 on the interval [−1, h]
is a solution to (3.1) with smooth r.h.s. such that x0 ∈ x̄0. Then ϕ(x0, ε) ∈ Supp(x̄ε).

Proof: the proof is obvious. All the coe�cients of the representation x̄ε were computed
with formulas valid for any function x0 ∈ x̄0, except for the remainders. Now, if x(t) is Cn+1

on [−1, h] then the n+1-st derivative of x exists on each interval [−i · h+ ε,−i · h+ h+ ε],
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Figure 5.1: The idea of the �rst ε-method H1. On the left: what we want to compute
(above) and what we have on the input (below). On the right: what is really computed by
the procedure H1.

1 ≤ i ≤ p. From the fact that 0 ≤ ε ≤ h we have:

x[n+1]
ε (−i · h+ [0, h]) = x[n+1](−i · h+ ε+ [0, h]) ⊂ (5.8)

⊂ x[n+1](−i · h+ [0, h]) ∪ x[n+1](−i · h+ h+ [0, h]) ⊂ (5.9)

⊂
[
x̄
i,[n+1]
0 , x̄

i,[n+1]
h

]
(5.10)

The graphical presentation of the idea of the ε-method H1 is shown in Figure 5.1.

Remark 22 In fact, procedure H1 uses r.h.s. of equation (3.1) only to compute coe�cient

x̄
0,[0]
ε (as it sums coe�cients from the representation xh = Φ(x0)). Apparently, when we

analyze the formula for c
i,[k]
t (ε) from Lemma 9 (which is used in procedure H1 to obtain

rigorous bounds on almost all coe�cients) we can draw a conclusion that ε-method H1 may
produce poor estimates for the solution because of the 'bottom-up' computation approach

which builds all c
i,[k]
t (ε) based on the remainder estimation x̄i,[n+1]. The remainder is often

big, because it holds bounds on the n+1-st derivative on the whole interval [−i ·h,−i ·h+h].
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The e�ect of this overestimation is not so important in the standard integration procedure
Φ, as it is only used to estimate a remainder in Taylor series of usually high order n + 1.

But it may have great impact on coe�cients c
i,[k]
t (ε), especially for k ≈ n or k ≈ n

2 , as for

those k's the approximation given by c
i,[k]
t (ε) is either of a low order in the variable ε (k

close to n) or it has quite big coe�cients
(
l
k

)
in (3.11) (k close to n

2 ). Thus it would be
advisable to �nd a better procedure for computing ε-method - a method that will use r.h.s.
of equation (3.1) to compute more coe�cients, and thus it would be able to �exploit� inner
dynamics of the system.

5.2 Second ε-method

Here, we will use the fact that remembering the history on an interval [−2, 0] instead
only on [−1, 0] gives us chance to compute all coe�cients of x̄ε using an analogue of the
forward-part algorithm from Section 3.2. This will allow to exploit the inner dynamics of
the equation (3.1) to (probably) get better numerical results on all coe�cients than it can
be done in the case of procedure H1. The idea is simple: we would be able to compute
coe�cients x̄i,[k]

ε using equation (3.27) if we have two ingredients:

� value for x̄i,[0]
ε , which can be simply obtained using equation (3.6) on coe�cients x̄1,[k]

h ,

� the derivatives in the past, namely estimates for x[k](ε− 1), 0 ≤ k ≤ n. For this, we
will simply use already presented procedure H1.

We hope, that this procedure will be better than H1 because equation (3.27) uses r.h.s. f
of the equation (3.1), thus it can take advantage of the contracting properties of the system
to compensate for overestimates given by H1. The idea behind the second ε-method H2 is
presented in the series of �gures 5.2-5.5 and the numerical procedure itself is presented in
Algorithm 12.

In the procedure H2 we will use an auxiliary method presented in Algorithm 11 for
computing remainder on the interval of length ε instead of length h as it is in case of
Algorithm 5.

The following lemma is true:

Lemma 23 Let x be a solution to (3.1) with some initial function x0.

Let r∗ be an output from Algorithm 11 executed for ε, i,
{
x̄
i,[k]
t−1

}
0≤k≤n+1

,
{
x̄
i,[k]
t

}
0≤k≤n

such that:

� ε ∈ [0, h],

� 1 ≤ i ≤ p,

� x
[k]
t−1(−i · h) ∈ x̄i,[k]

t−1 , for 0 ≤ k ≤ n
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Algorithm 11 compute-remainder∗

Input: ε, i,
{
x̄
i,[k]
t−1

}
0≤k≤n+1

,
{
x̄
i,[k]
t

}
0≤k≤n

Output: r∗, a∗, b∗

1:
{
c[k]
}
← compute-c(x[0]

t (−1), ..., x
[n+1]
t (−1), [0, ε])

2: d[0] ← roughEnclosure( f(c[0], ·), x̄0,[0]
0 , ε )

3: for k : 1 ≤ k ≤ n+ 1 do

4: d[k] ← 1
k · F

[k−1]
(
c[0], .., c[k−1], d[0], .., d[k−1]

)
5: end for

6: a∗ ← 1
(n+1) · F

[n]
(
x[0](−1), .., x[n](−1), x[0](0), .., x[n](0)

)
7: b∗ ← F [n+1](c[0], .., c[n], c[n+1], d[0], .., d[n], d[n+1])

8: r∗ ← a∗ + [0, ε] · b∗

� x
[n+1]
t−1 (−i · h+ ξ) ∈ x̄i,[n+1]

t−1 , for any ξ ∈ [0, ε],

� x
[k]
t (−i · h) ∈ x̄i,[k]

t , for 0 ≤ k ≤ n

Then x[n+1] ([−i · h,−i · h+ ε]) ⊂ r∗.

Proof: The proof is analogous to the proof of Lemma 13.

Now we are able to present the method H2 in Algorithm 12.

Lemma 24 Let x̄−1 be a representation and let x̄ε be an output from Algorithm 12 executed
for arguments ε, x−1, Φ(x−1), Φp(x−1), Φp+1(x−1). Assume that function x(t) of class
Cn+1 on the interval [−2, h] is a solution to (3.1) with initial function x−1 ∈ x̄−1. Then
ϕ(x−1, 1 + ε) ∈ Supp(x̄ε).

Below we present only sketch of a proof, as it is rather technical application of De�nition 10,
equation (3.6), equation (3.1), Lemma 21 and Lemma 11.
Proof: First of all, by Lemma 21, we have x−1+ε = ϕ(x−1, ε) ∈ Supp(r̄). Let xε =
ϕ(x−1, 1 + ε), then:

� we use equation (3.6) and De�nition 10 to obtain that xε(−i·h) ∈ x̄i,[0]
ε for all 0 ≤ i ≤ p

� we use equation (3.1) to obtain x[k]
ε (−i · h) ∈ x̄i,[k]

ε for each 1 ≤ i ≤ p and 0 ≤ k ≤ n,
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Algorithm 12 H2

Input: ε1, ε2, x̄past, x̄past′ , x̄before, x̄after

Output: x̄ε

Require: ε ∈ (0, h), x̄past′ = Φ(x̄past), x̄before = Φp(xpast), x̄after = Φp+1(xpast),

1: ε← [ε1, ε2]

2: r̄ ← H1(ε1, ε2, x̄past, x̄past′ )

3: for i : 1 ≤ i ≤ p do

4: ri,∗ ← compute-remainder
∗( [0, ε2], i, x̄

i,[0]
past, .., x̄

i,[n+1]
past , x̄

i,[0]
before, .., x̄

i,[n]
before )

5: x̄
i,[0]
ε ←

∑n
k=0 x̄

i,[k]
before · ε

k + ri,∗ · εn+1

6:
{
x̄
i,[k]
ε

}
1≤k≤n

← compute-rep-k( n− 1, r̄i,[0], .., r̄i,[k−1], x̄
i,[0]
ε )

7: end for

8: for k : 0 ≤ k ≤ n+ 1, i : 1 ≤ i ≤ p do

9: c
i,[k]
past ← compute-c-k( x̄past, i, k, [0, h] )

10: c
i,[k]
past′ ← compute-c-k( x̄past′ , i, k, [0, ε2] )

11: c̃i,[k] ← intervalHull( c
i,[k]
past, c

i,[k]
past′ )

12: end for

13: for i : 1 ≤ i ≤ p do

14: d̃i,[0] ← roughEnclosure( f, c̃i,[0], x̄
i,[0]
ε , h )

15:
{
d̃i,[k]

}
1≤k≤n+1

← compute-rep-k( n, c̃i,[0], .., c̃i,[k−1], d̃i,[0] )

16: end for

17:
x̄
i,[n+1]
ε ← 1

n+1
· F [n]

(
r̄i,[0], .., r̄i,[n], x̄

i,[0]
ε , .., x̄

i,[n]
ε

)
+

+ [0, h] · F [n+1]
(
c̃i,[0], .., c̃i,[n+1], d̃i,[0], d̃i,[n+1]

)
18: for k : 0 ≤ i ≤ n+ 1 do

19: cp,[k] ← compute-c-k( x̄before, i, k, [0, h] )

20: end for

21: d̃∗,[0] ← roughEnclosure( f, cp,[0], x̄
0,[0]
before, ε2 )

22:
{
d̃∗,[k]

}
← compute-rep-k( n, cp,[0], .., cp,[k−1], d̃∗,[0] )

23: a∗∗ ← 1
n+1
· F [n]

(
x̄
p,[0]
before, .., x̄

p,[n]
before, x̄

1,[0]
after, .., x̄

1,[n]
after

)
24: b∗∗ ← [0, ε2] · F [n+1]

(
cp,[0], .., cp,[n+1], d̃∗,[0], d̃∗,[n+1]

)
25: x̄

0,[0]
ε ←

∑n
k=0 x̄

1,[k]
after · ε

k + a∗∗ · εn+1 + b∗∗ · εn+2

� we use Lemma (11) and the fact that x(t) is of class Cn+1 on [−2, h] to get x[k]
ε (−i ·

h+ [0, h]) ⊂ x̄i,[n+1]
ε for all 1 ≤ i ≤ p
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The idea of the method H2 is presented in a series of �gures. In Figure 5.2 we have a
graphical representation of the setup to the procedure H2. Figure 5.3 shows the usage of
the method H1 to compute a representation r̄ of x−1+ε. The representation r̄ is then used
in other procedures to obtain other coe�cients using r.h.s. of equation (3.1). Computation

of x̄i,[k]
ε for 0 ≤ k ≤ n is presented in Figure 5.4. The �nal computation of the value of the

function at time t = ε is shown in Figure 5.5.

Remark 25 The procedure H2 in the form presented in Algorithm 12 has the following
advantage: in the case of r.h.s. of equation (3.1) independent of x(t − 1), i.e. when
f (x(t− 1), x(t)) = f (x(t)) we can show that the method is essentially equivalent to rigorous
Taylor method of order n for an ODE of the form x′ = f(x) for any step size ε ∈ [0, h].
We set f (x(t− 1), x(t)) to f (x(t)) and F [k]

(
x[0](t− 1), .., x[k](t− 1), x[0](t), .., x[k](t)

)
to

F [k]
(
x[0](t), .., x[k](t)

)
to indicate that there is no dependence on the past. We see that all

coe�cients of the resulting representation x̄ε are estimates given by the classical rigorous
Taylor method for ODEs. Namely, in the past, we have:

x̄i,[0]
ε =

n∑
k=0

x̄
i,[k]
0 · εk + bi,∗ · εn+1

x̄i,[k]
ε =

1

k
· F [k−1]

(
x̄i,[0]
ε , .., x̄i,[k−1]

ε

)
1 ≤ k ≤ n,

Where bi,∗ becomes a Taylor remainder computed using classical rough enclosure for ODE:
as we can see in Algorithm 11 f depends only on x(t), which reduces computation of d[0] to
computation of the classic rough enclosure for ODE x′ = f(x). Then, the coe�cients d[k]

depends only on d[0]:

d[k] =
1

k
· F [k−1]

(
d[0], .., d[k−1]

)
, 1 ≤ k ≤ n+ 1 (5.11)

exactly as in case of ODE Taylor method of order n.
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Figure 5.2: Computing aε with the second method - what we have (bottom) and what
we want to have (up). On the bottom, marked with gray dots and rectangles, there is

an additional column of representation ah for h = 1
p which is needed to compute x̄0,[0]

ε

(double-bordered circle above timeline). The element x̄3,[0]
0 = x̄

0,[0]
−1 that is present in both

representation a−1 and a0 is marked with border on the bottom. Dotted arrows shows time
t = ε− i

p , where we need to look for past values when computing given coe�cient.
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Figure 5.3: Here we have computed r = Rε(a−1) (double-bordered rectangles with gray
interior). We will use it as values at times ε − i

p (dashed lines). The elements needed

to compute r are drawn as solid black dots and dark gray rectangles. Notice that r̄i,[n+1]

are much bigger than needed, but we are not able to overcome this (a pointed out in
Section 5.1).
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Figure 5.4: Computing x̄i,[0]
ε in the second method . The elements needed to compute x̄i,[0]

ε

for i = 2 (highlighted double bordered element above the axis) are drawn highlighted below
the axis.
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Figure 5.5: Computing x̄0,[0]
ε in the second method (highlighted double bordered element

above the axis). Elements needed to compute x̄0,[0]
ε are drawn highlighted below the axis.

88



5.3 Comparison of the ε-step methods

Here we compare the performance of the ε-methods H1 and H2. The test are performed as
follows: we use as the input to the ε-methods the representations after N = p · (n+2) steps
from the integration process history in tests 3c, both for stationary solution to system (2.14)
and periodic solution to system (2.15). Here, the number of steps equal is important as
we need another representation after p · (n + 1) steps to compute procedure H2 and we
want to assure that this representation contains smooth enough functions. We present
the comparison of the diameters of the sets obtained from H1 and H2 for three step sizes
ε ∈

{
1
4 · h,

2
4 · h,

3
4 · h

}
to be able to asses the in�uence of the step size on the resulting set.

Figure 5.6 presents comparison of the ε-methods applied to a stationary solution x ≡
0 to system (2.14). In the �rst column we see the diameter of the (8,7)-representation
after N = p · (n + 2) steps of integration (p = 8, n = 7, h = 1

8). Three other columns
present diameters of the resulting sets after applying ε-method for increasing step size
ε ∈

{
1
4 · h,

1
2 · h,

3
4 · h

}
. We see that the diameters do not di�er signi�cantly for coe�cients

x̄i,[k] for k < 7. Closer inspection however reveals that the ε-method H2 is always better or
equal than the procedure H1. For k = 7 method H2 is evidently better than H1, especially
for longer step sizes. Moreover, it allowed to achieve contraction on the remainder part
(k = 8), where method H1 simply preserved the diameter of the set (this is consequence
of the way in which we compute remainder in H1, as a interval hull of two consecutive
remainder terms).

Figure 5.7 presents comparison of the ε-methods applied to a stable periodic solution
to system (2.15). First column presents the size of the initial function. Te second column
presents the diameter of the (8,7)-representation after N = p · (n + 2) steps of integration
(p = 8, n = 7, h = 1

8). Three other columns presents diameters of the resulting set after
applying ε-method for increasing step size ε ∈

{
1
4 · h,

1
2 · h,

3
4 · h

}
. For coe�cients x̄i,[k] for

k = 0 we see that the results does not di�er signi�cantly, but surprisingly we see that the
method H2 is worse than H1 for coe�cients with k = 1, 2. From k = 3 the method H2

starts to behave much better than H1, especially for longer step sizes. Especially, method
H2 guarantee that the remainder part is contracting, where method H1 fail, producing quite
big overestimates.

We cannot now explain the surprising behaviour of the H2 method for small values of
k. It may be that the diameter of the set in the past, ΦN−p(x̄0) used in the H2 method to
compute r∗, play a crucial role. But, as we see in Figure 5.8 the sets x̄past = ΦN−p(x̄0) and
x̄present = ΦN (x̄0) cannot be so easily compared - as some coe�cients are larger in past
(p steps before the section), but some of them are larger at the present time (just before
the section). So it is hard to draw a clear conclusion. This experiment suggests that the
preferred way of computing the representation after ε step size is to use both methods and
return intersection of the resulting representation.
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Figure 5.6: Performance of the ε-methods H1 and H2 (black and white respectively) computed
for three values of the step size ε ∈

{
1
4 · h,

1
2 · h,

3
4 · h

}
(second, third and fourth column re-

spectively). In the �rst column we have diameter of a set x̄before used to compute ε-method,
x̄before = Φp·(n+2)(x̄0) for initial representation x̄0 of a stable stationary solution for system (2.14).
System (2.14), doubleton Lohner set representation and (8,7)-representation were used for inte-
gration. The data from test 1c was used. Presented data for ε-methods H1 and H2 is stored in
�les steady_08_07_out_3/di_epsi_1_rect.txt and steady_08_07_out_3/di_epsi_2_rect.txt

respectively.
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Figure 5.7: Performance of the ε-methods H1 and H2 (black and white respectively) computed
for three values of the step size ε ∈

{
1
4 · h,

1
2 · h,

3
4 · h

}
(second, third and fourth column re-

spectively). In the �rst column we have diameter of a set x̄before used to compute ε-method,
x̄before = Φp·(n+2)(x̄0) for initial representation x̄0 of a stable periodic solution for system (2.15).
System (2.15), doubleton Lohner set representation and (8,7)-representation were used for integra-
tion. The data from test 1c was used. Presented data for ε-methods H1 and H2 is stored in �les
periodic_08_07_out_3/di_epsi_1_rect.txt and periodic_08_07_out_3/di_epsi_2_rect.txt
respectively.
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Figure 5.8: Comparison of diameters of the sets x̄past = ΦN−p(x̄0) and x̄present = ΦN (x̄0) (left
and right bar respectively) for the periodic orbit in system (2.15). The sets x̄past and x̄present are
used as an input to the H2 method and N = p · (n+ 2).

92



5.4 Discontinuity issues of ε-methods

In Remark 19, we have presented a problem that arises when we want to produce a (p, n)-
representation of a set ϕ (Supp(x̄0), ε) for 0 < ε < h. Namely, we are not able to represent
ϕ(x, ε) for all functions x ∈ Supp(x̄0) because many of them, in general, have discontinu-
ities in derivatives of various order at grid points t = −i · h (see examples in Remark 19).
In Lemmas 21 and 24 we have established a classes of functions for which procedures H1

and H2 produces valid (p, n)-representations. It is advisable then to be able to assure or
check a priori if those classes have nonempty intersection with the Supp(x̄0) of the initial
representation x̄0 and this section is devoted to this problem.

This problem is important in the case of rigorously proving the existence of periodic
orbits in system (3.1) with r.h.s. f smooth enough. Let assume that f is C∞, then we can
show that any periodic solution x(t) to (3.1) must be of class C∞ (for details see [8]). Thus
we can do rigorous computation using the integrator and the ε-methods to obtain estimates
of x(t) and to construct Poincaré map P in the vicinity of the initial function x0.

In the examples in Remark 19 we have shown that even C∞ initial function x0 may give
rise to a solution x(t) that is only C0. Only the solutions that are in some sense aligned to
the �ow ϕ will give rise to a smooth solutions. De�nition 18 gives a rigorous de�nition of
an alignment of an initial function and De�nition 19 de�nes a subset of Supp(f̄) of aligned
functions.

De�nition 18 Let x0 ∈ Ck. We say that x0 is Ck-aligned to system (3.1) i� x
(j)
0 (0−) =

dj

dtj
f (x0(t− 1), x0(t)) |t=0 for all 0 ≤ j ≤ k.

In other words, x0 is Ck-aligned if left and right derivatives of a solution x(t) of system (3.1)
with initial function x0 are equal up to order k at t = 0.

De�nition 19 We say that a (p,n)-representation x̄0 is Ck-consistent i� there exist x0 ∈
Supp(x̄0) such that x0 is Ck-aligned. By Cons(k)(x̄0) we denote the set of all Ck-aligned
functions in Supp(k)(x̄0).

Now, if the initial representation x̄0 is Cn+1-consistent then we can use ε-methods to
rigorously estimate restriction of the Poincaré map Pϕ,S to a set Cons(n+1)(x̄0) - thus
we will be able to use those estimates in computer assisted proofs. By the smoothing
property discussed shortly in Section 2.2 we know that the simplest method for obtaining
Ck-consistent representation is iteration of time shift by 1 map P (x0) = x1. If f in (3.1)
is of class at least Cn+1 and if z̄ is any interval (p, n)-representation then we have that
Φp·k must be Ck-consistent. This approach may be applied in the case of computer assisted
proofs of contracting periodic orbits but may fail when the orbit is repelling. Thus it is
advisable to provide other means for assuring that a representation is Ck-consistent - we
are going to address this issue in our future work.
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Chapter 6

Conclusions and the future work

In this work we have presented rigorous numerical algorithms to compute enclosures for the
solutions to scalar DDEs with single, bounded, constant delay of the form ẋ = f (x(t− 1), x(t)).
We have proved their correctness and we have measured the performance of our imple-
mentation of those algorithms on the exemplary DDEs, moreover we have developed and
implemented algorithms to compute Poincaré maps associated with the given DDE.

We have implemented the algorithms in a C++ library which extends the CAPD[1]
package. The implementation heavily uses template-based approach to provide high per-
formance during computations. The library, its documentation and the sample codes to-
gether with data from numerical experiments are available from the author's web page:
http://www.ii.uj.edu.pl/~szczelir.

The results obtained in this work are promising for the future application to the proofs
of dynamical phenomena existing in DDEs. However, to achieve this we need to overcome
several di�culties and questions that we have encountered during our research:

� how to choose good coordinate frame for initial function representation to be able
to create covering relations (needed in the proofs of unstable periodic orbits)? How
to compute rigorously inverses of big and usually close to singular matrices, that
comes from choosing (approximate) eigenvectors of the reduced Jacobian matrix of a
Poincaré map as the coordinate frame?

� why is the doubleton Lohner set with the cuboid error term representation worse
than the doubleton Lohner set with interval error term representation? What is the
performance of the QR decomposition in this case?

� is it possible to implement C1-computations from the work [33] (or some kind of their
analog) in the context of DDEs to be able to prove uniqueness of the solutions and
other important features of the solutions?

� test other strategies for computing ε-methods and access their performance.
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� how to check a priori if a representation is Ck-consistent without need to do many
steps of basic numerical method?

Besides overcoming those theoretical problems we would like also to extend our methods
to include any number of equations (systems of DDE), any number of discrete delays and
(if possible) time- and state- dependent, positive delays.

We hope that we will be able to overcome those problems and to provide in near future
an uni�ed framework to create computer assisted proofs in DDEs.
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